Environmental Engineering and Science, Stanford University, 94305, Stanford, California, USA.
Microb Ecol. 1990 Dec;20(1):151-69. doi: 10.1007/BF02543874.
The effect of growth in different mineral media on subsequent oxidation of trichloroethylene (TCE) by type I and type II aquifer methanotrophs was evaluated. Mixed culture MM1, containing a type II methanotroph, and a type I pure culture tentatively identified as aMethylomonas sp., were enriched and isolated from an uncontaminated groundwater aquifer. The second-order rate coefficients (k/Ks) for TCE oxidation by these cultures varied by more than an order of magnitude when the cultures were grown in different mineral media. The presence of a chelator (NaEDTA) in one of these media, termed Whittenbury, significantly enhanced rates of TCE oxidation by all the cultures tested. When pregrown in this mineral medium, the resting cells of the pure cultureMethylomonas sp. MM2 exhibited second-order TCE oxidation rates as great as 0.78 liter/mg·day, whereas when pregrown in Whittenbury lacking the chelator, the rates did not exceed 0.018 liter/mg·day. The rate of TCE oxidation byMethylomonas sp. MM2 pregrown in another mineral medium formulation, devoid of chelators (termed Fogel), was intermediate in value (0.26 liter/mg·day), and adding EDTA to this medium did not affect the rate. Adding 1.6 μM copper to both Whittenbury and Fogel mineral media reduced the TCE oxidation rates about an order of magnitude; subsequent addition of 84 μM EDTA partially alleviated this effect. The maximal rate coefficients (k) for TCE oxidation byMethylomonas sp. MM2 were significantly higher, and the half saturation coefficients (Ks) for TCE significantly lower, following growth in the presence of EDTA. Stationary phase TCE oxidation rates as great as 2.3 liter/mg·day were achieved whenMethylomonas sp. MM2, grown in Whittenbury medium was provided formate as a source of reducing power. Omitting EDTA from Whittenbury medium also significantly reduced the methane oxidation rate and the growth yield. Copper addition did not significantly affect the methane oxidation rate or growth yield. The internal membrane structures ofMethylomonas sp. MM2 evaluated by transmission electron microscopy showed the presence of internal membranes, the ultrastructure of which was the same regardless of growth medium or TCE oxidation rate. The methane monooxygenase responsible for TCE oxidation inMethylomonas sp. MM2 under the conditions of this study appears to be associated with the particulate fraction.
研究了不同矿物培养基中生长对 I 型和 II 型含水层甲烷营养菌后续氧化三氯乙烯(TCE)的影响。混合培养物 MM1 含有 II 型甲烷营养菌,以及一种 I 型纯培养物,被鉴定为 aMethylomonas sp.,从未受污染的地下水含水层中富集和分离。当这些培养物在不同的矿物培养基中生长时,它们对 TCE 的氧化的二级速率系数(k/Ks)相差一个数量级以上。在其中一种培养基(Whittenbury)中存在螯合剂(NaEDTA),显著提高了所有测试培养物的 TCE 氧化速率。当在该矿物培养基中预培养时,纯培养物 aMethylomonas sp. MM2 的静止细胞表现出的 TCE 氧化二级速率高达 0.78 升/毫克·天,而当在缺乏螯合剂的 Whittenbury 中预培养时,速率不超过 0.018 升/毫克·天。在另一种不含螯合剂的矿物培养基配方(称为 Fogel)中生长的 aMethylomonas sp. MM2 的 TCE 氧化速率为 0.26 升/毫克·天,添加 EDTA 对该速率没有影响。向 Whittenbury 和 Fogel 矿物培养基中添加 1.6 μM 铜将 TCE 氧化速率降低约一个数量级;随后添加 84 μM EDTA 部分缓解了这种效应。当在 EDTA 存在下生长时,aMethylomonas sp. MM2 对 TCE 的最大氧化速率(k)显著提高,TCE 的半饱和系数(Ks)显著降低。当提供甲酸盐作为还原力源时,在 Whittenbury 培养基中生长的 aMethylomonas sp. MM2 实现了高达 2.3 升/毫克·天的 TCE 氧化的固定相速率。从 Whittenbury 培养基中省略 EDTA 也显著降低了甲烷氧化速率和生长产率。铜的添加对甲烷氧化速率或生长产率没有显著影响。通过透射电子显微镜评估的 aMethylomonas sp. MM2 的内膜结构显示存在内膜,其超微结构无论生长培养基如何或 TCE 氧化速率如何都相同。在本研究条件下,负责 aMethylomonas sp. MM2 中 TCE 氧化的甲烷单加氧酶似乎与颗粒部分相关。