Suppr超能文献

基于稀疏表示的指纹压缩。

Fingerprint Compression Based on Sparse Representation.

出版信息

IEEE Trans Image Process. 2014 Feb;23(2):489-501. doi: 10.1109/TIP.2013.2287996. Epub 2013 Nov 1.

Abstract

A new fingerprint compression algorithm based on sparse representation is introduced. Obtaining an overcomplete dictionary from a set of fingerprint patches allows us to represent them as a sparse linear combination of dictionary atoms. In the algorithm, we first construct a dictionary for predefined fingerprint image patches. For a new given fingerprint images, represent its patches according to the dictionary by computing l(0)-minimization and then quantize and encode the representation. In this paper, we consider the effect of various factors on compression results. Three groups of fingerprint images are tested. The experiments demonstrate that our algorithm is efficient compared with several competing compression techniques (JPEG, JPEG 2000, and WSQ), especially at high compression ratios. The experiments also illustrate that the proposed algorithm is robust to extract minutiae.

摘要

提出了一种基于稀疏表示的新指纹压缩算法。从一组指纹补丁中获取过完备字典,使我们能够将它们表示为字典原子的稀疏线性组合。在算法中,我们首先为预定义的指纹图像补丁构建一个字典。对于新的给定指纹图像,通过计算 l(0)-最小化并对表示进行量化和编码,根据字典表示其补丁。在本文中,我们考虑了各种因素对压缩结果的影响。测试了三组指纹图像。实验表明,与几种竞争的压缩技术(JPEG、JPEG 2000 和 WSQ)相比,我们的算法效率更高,特别是在高压缩比下。实验还表明,所提出的算法对提取细节点具有鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验