Suppr超能文献

通过外部底物对纳米吸管中离子电流的整流作用。

Rectification of ion current in nanopipettes by external substrates.

作者信息

Sa Niya, Lan Wen-Jie, Shi Wenqing, Baker Lane A

机构信息

Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405.

Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112.

出版信息

ACS Nano. 2013 Dec 23;7(12):11272-11282. doi: 10.1021/nn4050485. Epub 2013 Dec 9.

Abstract

We describe ion distribution and the current-voltage (i-V) response of nanopipettes at different probe-to-substrate distances (Dps) as simulated by finite-element methods. Results suggest electrostatic interactions between a charged substrate and the nanopipette dominate electrophoretic ion transport through the nanopipette when Dps is within 1 order of magnitude of the Debye length (∼10 nm for a 1 mM solution as employed in the simulation). Ion current rectification (ICR) and permselectivity associated with a neutral or charged nanopipette can be reversibly enhanced or reduced dependent on Dps, charge polarity, and charge density (σ) of the substrate. Regulation of nanopipette current is a consequence of the enrichment or depletion of ions within the nanopipette interior, which influences conductivity of the nanopipette. When the external substrate is less negatively charged than the nanopipette, the substrate first reduces, and then enhances the ICR as Dps decreases. Surprisingly, both experimental and simulated data show that a neutral substrate was also able to reduce and reverse the ICR of a slightly negatively charged nanopipette. Simulated results ascribe such effects to the elimination of ion depletion within the nanopipette at positive potentials.

摘要

我们描述了通过有限元方法模拟的不同探针与底物距离(Dps)下纳米吸管的离子分布和电流-电压(i-V)响应。结果表明,当Dps在德拜长度的1个数量级范围内(模拟中使用的1 mM溶液约为10 nm)时,带电底物与纳米吸管之间的静电相互作用主导了通过纳米吸管的电泳离子传输。与中性或带电纳米吸管相关的离子电流整流(ICR)和渗透选择性可根据Dps、底物的电荷极性和电荷密度(σ)而可逆地增强或降低。纳米吸管电流的调节是纳米吸管内部离子富集或耗尽的结果,这会影响纳米吸管的电导率。当外部底物的负电荷比纳米吸管少时,随着Dps减小,底物首先降低,然后增强ICR。令人惊讶的是,实验和模拟数据均表明,中性底物也能够降低并反转带轻微负电荷的纳米吸管的ICR。模拟结果将这种效应归因于正电位下纳米吸管内离子耗尽的消除。

相似文献

2
Nanopipette delivery: influence of surface charge.纳米移液器递送:表面电荷的影响
Analyst. 2015 Jul 21;140(14):4835-42. doi: 10.1039/c4an01073f. Epub 2014 Aug 13.
3
Surface charge mapping with a nanopipette.用纳米移液器进行表面电荷测绘。
J Am Chem Soc. 2014 Oct 1;136(39):13735-44. doi: 10.1021/ja506139u. Epub 2014 Sep 19.
7
Characterization of Nanopipettes.纳米吸管的特性研究。
Anal Chem. 2016 May 17;88(10):5523-30. doi: 10.1021/acs.analchem.6b01095. Epub 2016 May 5.

引用本文的文献

1
Scanning Ion Conductance Microscopy of Nafion-Modified Nanopores.纳滤膜修饰纳米孔的扫描离子电导显微镜
J Electrochem Soc. 2023;170(6). doi: 10.1149/1945-7111/acdd29. Epub 2023 Jun 21.
2
Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis.电催化过程中的原位扫描电化学探针显微镜。
Chem Rev. 2023 Apr 26;123(8):4972-5019. doi: 10.1021/acs.chemrev.2c00766. Epub 2023 Mar 27.
4
The New Era of High-Throughput Nanoelectrochemistry.高通量纳米电化学的新时代。
Anal Chem. 2023 Jan 10;95(1):319-356. doi: 10.1021/acs.analchem.2c05105.
7
Scanning Ion Conductance Microscopy.扫描离子电导显微镜。
Chem Rev. 2021 Oct 13;121(19):11726-11768. doi: 10.1021/acs.chemrev.0c00962. Epub 2020 Dec 9.

本文引用的文献

1
Single protein molecule detection by glass nanopores.玻璃纳米孔中单蛋白质分子的检测。
ACS Nano. 2013 May 28;7(5):4129-34. doi: 10.1021/nn4004567. Epub 2013 Apr 22.
2
Multiplexed ionic current sensing with glass nanopores.玻璃纳米孔的多重离子电流感应。
Lab Chip. 2013 May 21;13(10):1859-62. doi: 10.1039/c3lc50069a. Epub 2013 Apr 8.
8
Reversible cation response with a protein-modified nanopipette.蛋白质修饰纳米管的可逆阳离子响应。
Anal Chem. 2011 Aug 15;83(16):6121-6. doi: 10.1021/ac201322v. Epub 2011 Jul 22.
9
Rectification of nanopores at surfaces.表面纳米孔的校正。
J Am Chem Soc. 2011 Jul 13;133(27):10398-401. doi: 10.1021/ja203883q. Epub 2011 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验