Suppr超能文献

使用跳跃模式扫描离子电导显微镜技术进行荷电状态映射。

Charge Mapping of Using a Hopping Mode Scanning Ion Conductance Microscopy Technique.

机构信息

Department of Electrical Engineering, Columbia University, New York, New York 10027, United States.

Department of Biology, Columbia University, New York, New York 10027, United States.

出版信息

Anal Chem. 2023 Mar 28;95(12):5285-5292. doi: 10.1021/acs.analchem.2c05303. Epub 2023 Mar 15.

Abstract

Scanning ion conductance microscopy (SICM) is a topographic imaging technique capable of probing biological samples in electrolyte conditions. SICM enhancements have enabled surface charge detection based on voltage-dependent signals. Here, we show how the hopping mode SICM method (HP-SICM) can be used for rapid and minimally invasive surface charge mapping. We validate our method usingPA14 (PA) cells and observe a surface charge density of σ = -2.0 ± 0.45 mC/m that is homogeneous within the ∼80 nm lateral scan resolution. This biological surface charge is detected from at least 1.7 μm above the membrane (395× the Debye length), and the long-range charge detection is attributed to electroosmotic amplification. We show that imaging with a nanobubble-plugged probe reduces perturbation of the underlying sample. We extend the technique to PA biofilms and observe a charge density exceeding -20 mC/m. We use a solid-state calibration to quantify surface charge density and show that HP-SICM cannot be quantitatively described by a steady-state finite element model. This work contributes to the body of scanning probe methods that can uniquely contribute to microbiology and cellular biology.

摘要

扫描离子电导显微镜(SICM)是一种能够在电解质条件下探测生物样本的形貌成像技术。SICM 的增强功能使基于电压相关信号的表面电荷检测成为可能。在这里,我们展示了 hopping 模式 SICM 方法(HP-SICM)如何用于快速和微创的表面电荷测绘。我们使用 PA14(PA)细胞验证了我们的方法,并观察到表面电荷密度 σ = -2.0 ± 0.45 mC/m,在约 80nm 的横向扫描分辨率内是均匀的。这种生物表面电荷是从离细胞膜至少 1.7μm 的高度(395×德拜长度)检测到的,长程电荷检测归因于电动渗透放大。我们表明,使用纳米气泡堵塞的探针进行成像可以减少对底层样品的干扰。我们将该技术扩展到 PA 生物膜,并观察到超过-20 mC/m 的电荷密度。我们使用固态校准来量化表面电荷密度,并表明 HP-SICM 不能用稳态有限元模型来定量描述。这项工作为能够为微生物学和细胞生物学做出独特贡献的扫描探针方法提供了参考。

相似文献

4
Multifunctional scanning ion conductance microscopy.多功能扫描离子电导显微镜
Proc Math Phys Eng Sci. 2017 Apr;473(2200):20160889. doi: 10.1098/rspa.2016.0889. Epub 2017 Apr 12.
8
Simultaneous Nanoscale Surface Charge and Topographical Mapping.同时纳米级表面电荷和形貌测绘。
ACS Nano. 2015 Jul 28;9(7):7266-76. doi: 10.1021/acsnano.5b02095. Epub 2015 Jul 14.

本文引用的文献

1
Revealing Electrical Double-Layer Potential of Substrates by Hysteresis Ion Transport in Scanning Ion Conductance Microscopy.
Anal Chem. 2021 Dec 7;93(48):15821-15825. doi: 10.1021/acs.analchem.1c04486. Epub 2021 Nov 24.
9
Nanobubble-controlled nanofluidic transport.纳米气泡控制的纳米流体传输。
Sci Adv. 2020 Nov 13;6(46). doi: 10.1126/sciadv.abd0126. Print 2020 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验