Fernández-Alfonso Tomás, Nadella K M Naga Srinivas, Iacaruso M Florencia, Pichler Bruno, Roš Hana, Kirkby Paul A, Silver R Angus
Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
J Neurosci Methods. 2014 Jan 30;222:69-81. doi: 10.1016/j.jneumeth.2013.10.021. Epub 2013 Nov 4.
Two-photon microscopy is widely used to study brain function, but conventional microscopes are too slow to capture the timing of neuronal signalling and imaging is restricted to one plane. Recent development of acousto-optic-deflector-based random access functional imaging has improved the temporal resolution, but the utility of these technologies for mapping 3D synaptic activity patterns and their performance at the excitation wavelengths required to image genetically encoded indicators have not been investigated.
Here, we have used a compact acousto-optic lens (AOL) two-photon microscope to make high speed [Ca(2+)] measurements from spines and dendrites distributed in 3D with different excitation wavelengths (800-920 nm).
We show simultaneous monitoring of activity from many synaptic inputs distributed over the 3D arborisation of a neuronal dendrite using both synthetic as well as genetically encoded indicators. We confirm the utility of AOL-based imaging for fast in vivo recordings by measuring, simultaneously, visually evoked responses in 100 neurons distributed over a 150 μm focal depth range. Moreover, we explore ways to improve the measurement of timing of neuronal activation by choosing specific regions within the cell soma.
These results establish that AOL-based 3D random access two-photon microscopy has a wider range of neuroscience applications than previously shown.
Our findings show that the compact AOL microscope design has the speed, spatial resolution, sensitivity and wavelength flexibility to measure 3D patterns of synaptic and neuronal activity on individual trials.
双光子显微镜被广泛用于研究脑功能,但传统显微镜速度过慢,无法捕捉神经元信号传导的时间,且成像仅限于一个平面。基于声光偏转器的随机存取功能成像技术的最新发展提高了时间分辨率,但这些技术在绘制三维突触活动模式方面的效用以及它们在对基因编码指示剂成像所需激发波长下的性能尚未得到研究。
在此,我们使用了一种紧凑型声光透镜(AOL)双光子显微镜,以不同激发波长(800 - 920纳米)对分布于三维空间的棘突和树突进行高速[Ca(2+)]测量。
我们展示了使用合成指示剂和基因编码指示剂同时监测分布在神经元树突三维分支上的多个突触输入的活动。通过同时测量分布在150微米焦深范围内的100个神经元的视觉诱发反应,我们证实了基于AOL成像在快速体内记录方面的效用。此外,我们探索了通过选择细胞体中的特定区域来改善神经元激活时间测量的方法。
这些结果表明,基于AOL的三维随机存取双光子显微镜在神经科学中的应用范围比以前所显示的更广。
我们的研究结果表明,紧凑型AOL显微镜设计具有速度、空间分辨率、灵敏度和波长灵活性,能够在单个试验中测量突触和神经元活动的三维模式。