Suppr超能文献

一眼看透内视网膜的时间结构。

The temporal structure of the inner retina at a single glance.

机构信息

Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.

Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany.

出版信息

Sci Rep. 2020 Mar 10;10(1):4399. doi: 10.1038/s41598-020-60214-z.

Abstract

The retina decomposes visual stimuli into parallel channels that encode different features of the visual environment. Central to this computation is the synaptic processing in a dense layer of neuropil, the so-called inner plexiform layer (IPL). Here, different types of bipolar cells stratifying at distinct depths relay the excitatory feedforward drive from photoreceptors to amacrine and ganglion cells. Current experimental techniques for studying processing in the IPL do not allow imaging the entire IPL simultaneously in the intact tissue. Here, we extend a two-photon microscope with an electrically tunable lens allowing us to obtain optical vertical slices of the IPL, which provide a complete picture of the response diversity of bipolar cells at a "single glance". The nature of these axial recordings additionally allowed us to isolate and investigate batch effects, i.e. inter-experimental variations resulting in systematic differences in response speed. As a proof of principle, we developed a simple model that disentangles biological from experimental causes of variability and allowed us to recover the characteristic gradient of response speeds across the IPL with higher precision than before. Our new framework will make it possible to study the computations performed in the central synaptic layer of the retina more efficiently.

摘要

视网膜将视觉刺激分解为平行的通道,这些通道编码视觉环境的不同特征。这种计算的核心是在所谓的内丛状层(IPL)中神经突起的密集层中的突触处理。在这里,分层在不同深度的不同类型的双极细胞将光感受器的兴奋性前馈驱动中继到无长突细胞和神经节细胞。目前用于研究 IPL 中处理的实验技术不允许在完整组织中同时对整个 IPL 进行成像。在这里,我们扩展了具有电可调透镜的双光子显微镜,使我们能够获得 IPL 的光学垂直切片,这些切片提供了双极细胞反应多样性的完整图片,只需“一瞥”即可。这些轴向记录的性质还允许我们分离和研究批处理效应,即由于响应速度的系统差异而导致的实验间变化。作为原理验证,我们开发了一个简单的模型,该模型将生物和实验引起的可变性分开,并使我们能够比以前更高的精度恢复 IPL 中响应速度的特征梯度。我们的新框架将使研究视网膜中央突触层中执行的计算更加高效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca6/7064538/42774e843f2c/41598_2020_60214_Fig1_HTML.jpg

相似文献

1
The temporal structure of the inner retina at a single glance.
Sci Rep. 2020 Mar 10;10(1):4399. doi: 10.1038/s41598-020-60214-z.
2
Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses.
J Comp Neurol. 2003 Jun 2;460(3):380-93. doi: 10.1002/cne.10652.
4
Organization of the inner plexiform layer of the turtle retina: an electron microscopic study.
J Comp Neurol. 1988 Jun 8;272(2):280-92. doi: 10.1002/cne.902720210.
5
ON cone bipolar cell axonal synapses in the OFF inner plexiform layer of the rabbit retina.
J Comp Neurol. 2013 Apr 1;521(5):977-1000. doi: 10.1002/cne.23244.
6
Cellular requirements for building a retinal neuropil.
Cell Rep. 2013 Feb 21;3(2):282-90. doi: 10.1016/j.celrep.2013.01.020. Epub 2013 Feb 14.
10
Synaptic connections of calbindin-immunoreactive cone bipolar cells in the inner plexiform layer of rabbit retina.
Cell Tissue Res. 2010 Feb;339(2):311-20. doi: 10.1007/s00441-009-0895-6. Epub 2009 Nov 25.

引用本文的文献

1
Learning to cluster neuronal function.
ArXiv. 2025 Jun 3:arXiv:2506.03293v1.
3
A chromatic feature detector in the retina signals visual context changes.
Elife. 2024 Oct 4;13:e86860. doi: 10.7554/eLife.86860.
5
Distributed feature representations of natural stimuli across parallel retinal pathways.
Nat Commun. 2024 Mar 1;15(1):1920. doi: 10.1038/s41467-024-46348-y.
6
Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina.
Nat Commun. 2022 Sep 26;13(1):5574. doi: 10.1038/s41467-022-32762-7.
7
Non-telecentric two-photon microscopy for 3D random access mesoscale imaging.
Nat Commun. 2022 Jan 27;13(1):544. doi: 10.1038/s41467-022-28192-0.
8
Retinal horizontal cells use different synaptic sites for global feedforward and local feedback signaling.
Curr Biol. 2022 Feb 7;32(3):545-558.e5. doi: 10.1016/j.cub.2021.11.055. Epub 2021 Dec 14.
9
Temperature and species-dependent regulation of browning in retrobulbar fat.
Sci Rep. 2021 Feb 4;11(1):3094. doi: 10.1038/s41598-021-82672-9.
10
Electrical Imaging of Light-Induced Signals Across and Within Retinal Layers.
Front Neurosci. 2020 Nov 19;14:563964. doi: 10.3389/fnins.2020.563964. eCollection 2020.

本文引用的文献

1
Neural circuits in the mouse retina support color vision in the upper visual field.
Nat Commun. 2020 Jul 13;11(1):3481. doi: 10.1038/s41467-020-17113-8.
3
Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes.
Neuron. 2019 Dec 18;104(6):1039-1055.e12. doi: 10.1016/j.neuron.2019.11.006. Epub 2019 Nov 26.
4
An arbitrary-spectrum spatial visual stimulator for vision research.
Elife. 2019 Sep 23;8:e48779. doi: 10.7554/eLife.48779.
5
Unusual Physiological Properties of Smooth Monostratified Ganglion Cell Types in Primate Retina.
Neuron. 2019 Aug 21;103(4):658-672.e6. doi: 10.1016/j.neuron.2019.05.036. Epub 2019 Jun 18.
6
Correction-free remotely scanned two-photon mouse retinal imaging.
Light Sci Appl. 2016 Jan 1;5(1):e16007. doi: 10.1038/lsa.2016.7. eCollection 2016 Jan.
7
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.
Nat Biotechnol. 2018 Jun;36(5):421-427. doi: 10.1038/nbt.4091. Epub 2018 Apr 2.
9
Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures.
PLoS One. 2017 Jul 28;12(7):e0180091. doi: 10.1371/journal.pone.0180091. eCollection 2017.
10
Inhibitory Interneurons in the Retina: Types, Circuitry, and Function.
Annu Rev Vis Sci. 2017 Sep 15;3:1-24. doi: 10.1146/annurev-vision-102016-061345. Epub 2017 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验