Kim Jaehyeon, Hyun Younghoon, Park Youngsam, Choi Wonchul, Kim Soojung, Jeon Hyojin, Zyung Taehyeong, Jang Moongyu
NT Research division, ETRI, Yuseong, Daejeon, 305-700, Korea.
J Nanosci Nanotechnol. 2013 Sep;13(9):6416-9. doi: 10.1166/jnn.2013.7612.
A silicon nanowire one-dimensional thermoelectric device is presented as a solution to enhance thermoelectric performance. A top-down process is adopted for the definition of 50 nm silicon nanowires (SiNWs) and the fabrication of the nano-structured thermoelectric devices on silicon on insulator (SOl) wafer. To measure the Seebeck coefficients of 50 nm width n- and p-type SiNWs, a thermoelectric test structure, containing SiNWs, micro-heaters and temperature sensors is fabricated. Doping concentration is 1.0 x 10(20) cm(-3) for both for n- and p-type SiNWs. To determine the temperature gradient, a temperature coefficient of resistance (TCR) analysis is done and the extracted TCR value is 1750-1800 PPM x K(-1). The measured Seebeck coefficients are -127.583 microV x K(-1) and 141.758 microV x K(-1) for n- and p-type SiNWs, respectively, at room temperature. Consequently, power factor values are 1.46 mW x m(-1) x K(-2) and 1.66 mW x m(-1) x K(-2) for n- and p-type SiNWs, respectively. Our results indicate that SiNWs based thermoelectric devices have a great potential for applications in future energy conversion systems.
提出了一种硅纳米线一维热电器件作为提高热电性能的解决方案。采用自上而下的工艺来定义50纳米的硅纳米线(SiNWs),并在绝缘体上硅(SOl)晶圆上制造纳米结构热电器件。为了测量50纳米宽的n型和p型SiNWs的塞贝克系数,制造了一种包含SiNWs、微型加热器和温度传感器的热电测试结构。n型和p型SiNWs的掺杂浓度均为1.0×10(20) cm(-3)。为了确定温度梯度,进行了电阻温度系数(TCR)分析,提取的TCR值为1750 - 1800 PPM×K(-1)。在室温下,n型和p型SiNWs测得的塞贝克系数分别为 - 127.583 μV×K(-1) 和141.758 μV×K(-1)。因此,n型和p型SiNWs的功率因子值分别为1.46 mW×m(-1)×K(-2) 和1.66 mW×m(-1)×K(-2)。我们的结果表明基于SiNWs的热电器件在未来能量转换系统中具有很大的应用潜力。