Suppr超能文献

基于集成边缘和区域信息的新型格子玻尔兹曼方法用于医学图像分割。

Novel lattice Boltzmann method based on integrated edge and region information for medical image segmentation.

作者信息

Wen Junling, Yan Zhuangzhi, Jiang Jiehui

机构信息

Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China.

出版信息

Biomed Mater Eng. 2014;24(1):1247-52. doi: 10.3233/BME-130926.

Abstract

The lattice Boltzmann (LB) method is a mesoscopic method based on kinetic theory and statistical mechanics. The main advantage of the LB method is parallel computation, which increases the speed of calculation. In the past decade, LB methods have gradually been introduced for image processing, e.g., image segmentation. However, a major shortcoming of existing LB methods is that they can only be applied to the processing of medical images with intensity homogeneity. In practice, however, many medical images possess intensity inhomogeneity. In this study, we developed a novel LB method to integrate edge and region information for medical image segmentation. In contrast to other segmentation methods, we added edge information as a relaxing factor and used region information as a source term. The proposed method facilitates the segmentation of medical images with intensity inhomogeneity and it still allows parallel computation. Preliminary tests of the proposed method are presented in this paper.

摘要

格子玻尔兹曼(LB)方法是一种基于动力学理论和统计力学的介观方法。LB方法的主要优点是并行计算,这提高了计算速度。在过去十年中,LB方法已逐渐被引入到图像处理中,例如图像分割。然而,现有LB方法的一个主要缺点是它们只能应用于强度均匀的医学图像的处理。然而,在实际中,许多医学图像具有强度不均匀性。在本研究中,我们开发了一种新颖的LB方法,用于整合边缘和区域信息以进行医学图像分割。与其他分割方法不同,我们将边缘信息作为松弛因子添加,并将区域信息用作源项。所提出的方法有助于对具有强度不均匀性的医学图像进行分割,并且仍然允许并行计算。本文给出了所提出方法的初步测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验