Botany School, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK.
Planta. 1989 Dec;178(4):495-508. doi: 10.1007/BF00963820.
Fusicoccin (FC) has long been known to promote K(+) uptake in higher plant cells, including stomatal guard cells, yet the precise mechanism behind this enhancement remains uncertain. Membrane hyperpolarization, thought to arise from primary H(+) pumping stimulated in FC, could help drive K(+) uptake, but the extent to which FC stimulates influx and uptake frequently exceeds any reasonable estimates from Constant Field Theory based on changes in the free-running membrane potential (V m) alone; furthermore, unidirectional flux analyses have shown that in the toxin K(+) ((86)Rb(+)) exchange plummets to 10% of the control (G.M. Clint and E.A.C. MacRobbie 1984, J. Exp. Bot.35 180-192). Thus, the activities of specific pathways for K(+) movement across the membrane could be modified in FC. We have explored a role for K(+) channels in mediating these fluxes in guard cells ofVicia faba L. The correspondence between FC-induced changes in chemical ((86)Rb(+)) flux and in electrical current under voltage clamp was followed, using the K(+) channel blocker tetraethylammonium chloride (TEA) to probe tracer and charge movement through K(+)-selective channels. Parallel flux and electrical measurements were carried out when cells showed little evidence of primary pump activity, thus simplifying analyses. Under these conditions, outward-directed K(+) channel current contributed appreciably to charge balance maintainingV m, and adding 10 mM TEA to block the current depolarized (positive-going)V m; TEA also reduced(86)Rb(+) efflux by 68-80%. Following treatments with 10 μM FC, both K(+) channel current and(86)Rb(+) efflux decayed, irreversbly and without apparent lag, to 10%-15% of the controls and with equivalent half-times (approx. 4 min). Fusicoccin also enhanced(86)Rb(+) influx by 13.9-fold, but the influx proved largely insensitive to TEA. Overall, FC promotednet cation uptake in 0.1 mM K(+) (Rb(+)), despite membrane potentials which were 30-60 mVpositive of the K(+) equilibrium potential. These results tentatively link (chemical) cation efflux to charge movement through the K(+) channels. They offer evidence of an energy-coupled mechanism for K(+) uptake in guard cells. Finally, the data reaffirm early suspicions that FC alters profoundly the K(+) transport capacity of the cells, independent of any changes in membrane potential.
真菌酸(FC)长期以来一直被认为可以促进高等植物细胞,包括保卫细胞中的 K(+)摄取,但这种增强的确切机制仍不确定。膜超极化,据认为是由 FC 刺激的初级 H(+)泵引起的,可能有助于驱动 K(+)摄取,但 FC 刺激的流入和摄取的程度经常超过仅基于自由运行膜电位(Vm)变化的恒场理论的任何合理估计;此外,单向通量分析表明,在毒素 K(+)((86)Rb(+))交换中,通量暴跌至对照的 10%(G.M. Clint 和 E.A.C. MacRobbie 1984,J. Exp. Bot.35 180-192)。因此,FC 可以修饰跨膜的 K(+)运动的特定途径的活性。我们已经探讨了 K(+)通道在蚕豆保卫细胞中介导这些通量中的作用。使用 K(+)通道阻断剂四乙铵氯化物(TEA)来探测通过 K(+)选择性通道的示踪剂和电荷运动,跟踪 FC 诱导的化学((86)Rb(+))通量变化与电压钳下的电流变化之间的对应关系。当细胞显示出初级泵活动的很少证据时,进行平行的通量和电测量,从而简化了分析。在这些条件下,向外定向的 K(+)通道电流对维持 V m 的电荷平衡有很大贡献,并且添加 10 mM TEA 会使正向 V m 去极化(正向);TEA 还将(86)Rb(+)流出减少了 68-80%。用 10 μM FC 处理后,K(+)通道电流和(86)Rb(+)流出均不可逆地且无明显滞后地衰减至对照的 10%-15%,半衰期(约 4 分钟)相同。FC 还将(86)Rb(+)内流增强了 13.9 倍,但内流对 TEA 的敏感性却大大降低。总体而言,尽管膜电位比 K(+)平衡电位正 30-60 mV,但 FC 仍促进了 0.1 mM K(+)(Rb(+))中的净阳离子摄取。这些结果初步将(化学)阳离子流出与通过 K(+)通道的电荷运动联系起来。它们为保卫细胞中 K(+)摄取的能量偶联机制提供了证据。最后,这些数据再次证实了早期的怀疑,即 FC 深刻改变了细胞的 K(+)运输能力,而与膜电位的任何变化无关。