Ghosh Souparno, Gelfand Alan E, Clark James S
S. Ghosh (
J Agric Biol Environ Stat. 2012 Dec;17(4). doi: 10.1007/s13253-012-0123-9.
Population dynamics with regard to evolution of traits has typically been studied using matrix projection models (MPMs). Recently, to work with continuous traits, integral projection models (IPMs) have been proposed. Imitating the path with MPMs, IPMs are handled first with a fitting stage, then with a projection stage. Fitting these models has so far been done only with individual-level data. These data are used to estimate the demographic functions (survival, growth, fecundity) that comprise the of the IPM specification. Then, the estimated kernel is iterated from an initial trait distribution to project steady state population behavior under this kernel. When trait distributions are observed over time, such an approach does not align projected distributions with these observed temporal benchmarks. The contribution here, focusing on size distributions, is to address this issue. Our concern is that the above approach introduces an inherent mismatch in scales. The redistribution kernel in the IPM proposes a mechanistic description of population level redistribution. A kernel of the same functional form, fitted to data at the individual level, would provide a mechanistic model for individual-level processes. Resulting parameter estimates and the associated estimated kernel are at the wrong scale and do not allow population-level interpretation. Our approach views the observed size distribution at a given time as a point pattern over a bounded interval. We build a three-stage hierarchical model to infer about the dynamic intensities used to explain the observed point patterns. This model is driven by a deterministic IPM and we introduce uncertainty by having the operating IPM vary around this deterministic specification. Further uncertainty arises in the realization of the point pattern given the operating IPM. Fitted within a Bayesian framework, such modeling enables full inference about all features of the model. Such dynamic modeling, by fitting data observed over time, is better suited to projection. Exact Bayesian model fitting is very computationally challenging; we offer approximate strategies to facilitate computation. We illustrate with simulated data examples as well as well as a set of annual tree growth data from Duke Forest in North Carolina. A further example shows the benefit of our approach, in terms of projection, compared with the foregoing individual level fitting.
关于性状进化的种群动态通常使用矩阵投影模型(MPMs)进行研究。最近,为了处理连续性状,人们提出了积分投影模型(IPMs)。仿照MPMs的路径,IPMs首先经过一个拟合阶段,然后是投影阶段。到目前为止,这些模型的拟合仅使用个体层面的数据。这些数据用于估计构成IPM规范的人口统计函数(生存、生长、繁殖力)。然后,从初始性状分布迭代估计的核,以预测在此核下的稳态种群行为。当观察到性状分布随时间变化时,这种方法无法使预测分布与这些观察到的时间基准对齐。这里的贡献,聚焦于大小分布,旨在解决这个问题。我们担心上述方法在尺度上引入了内在的不匹配。IPM中的再分配核提出了种群水平再分配的机制描述。具有相同函数形式的核,拟合个体层面的数据,将为个体层面的过程提供一个机制模型。由此得到的参数估计和相关的估计核处于错误的尺度,不允许进行种群水平的解释。我们的方法将给定时间观察到的大小分布视为有界区间上的点模式。我们构建了一个三阶段层次模型,以推断用于解释观察到的点模式的动态强度。这个模型由一个确定性IPM驱动,我们通过让运行的IPM围绕这个确定性规范变化来引入不确定性。在给定运行IPM的情况下,点模式的实现会产生进一步的不确定性。在贝叶斯框架内进行拟合,这样的建模能够对模型的所有特征进行全面推断。这种动态建模,通过拟合随时间观察到的数据,更适合进行预测。精确的贝叶斯模型拟合在计算上极具挑战性;我们提供近似策略以促进计算。我们用模拟数据示例以及北卡罗来纳州杜克森林的一组年度树木生长数据进行说明。另一个例子展示了我们的方法在预测方面相对于前述个体层面拟合的优势。