Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
PLoS One. 2013 Nov 5;8(11):e78401. doi: 10.1371/journal.pone.0078401. eCollection 2013.
Genetic algorithms (GAs) have been used to find efficient solutions to numerous fundamental and applied problems. While GAs are a robust and flexible approach to solve complex problems, there are some situations under which they perform poorly. Here, we introduce a genetic algorithm approach that is able to solve complex tasks plagued by so-called ''golf-course''-like fitness landscapes. Our approach, which we denote variable environment genetic algorithms (VEGAs), is able to find highly efficient solutions by inducing environmental changes that require more complex solutions and thus creating an evolutionary drive. Using the density classification task, a paradigmatic computer science problem, as a case study, we show that more complex rules that preserve information about the solution to simpler tasks can adapt to more challenging environments. Interestingly, we find that conservative strategies, which have a bias toward the current state, evolve naturally as a highly efficient solution to the density classification task under noisy conditions.
遗传算法 (GA) 已被用于寻找解决众多基础和应用问题的有效方法。虽然 GA 是解决复杂问题的强大而灵活的方法,但在某些情况下它们的表现不佳。在这里,我们引入了一种遗传算法方法,该方法能够解决受所谓“高尔夫球场”样适应度景观困扰的复杂任务。我们的方法,我们称之为可变环境遗传算法 (VEGA),能够通过诱导需要更复杂解决方案的环境变化来找到高效的解决方案,从而产生进化动力。我们使用密度分类任务作为一个案例研究,这是一个典型的计算机科学问题,结果表明,能够适应更具挑战性环境的更复杂规则可以保留关于更简单任务的解决方案的信息。有趣的是,我们发现,在噪声条件下,具有当前状态偏向的保守策略会自然进化为密度分类任务的高效解决方案。