Suppr超能文献

体细胞共振与树突共振:通过活性电导的非均匀分布对输入进行差异滤波。

Somatic versus dendritic resonance: differential filtering of inputs through non-uniform distributions of active conductances.

作者信息

Zhuchkova Ekaterina, Remme Michiel W H, Schreiber Susanne

机构信息

Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

PLoS One. 2013 Nov 5;8(11):e78908. doi: 10.1371/journal.pone.0078908. eCollection 2013.

Abstract

Synaptic inputs to neurons are processed in a frequency-dependent manner, with either low-pass or resonant response characteristics. These types of filtering play a key role in the frequency-specific information flow in neuronal networks. While the generation of resonance by specific ionic conductances is well investigated, less attention has been paid to the spatial distribution of the resonance-generating conductances across a neuron. In pyramidal neurons - one of the major excitatory cell-types in the mammalian brain - a steep gradient of resonance-generating h-conductances with a 60-fold increase towards distal dendrites has been demonstrated experimentally. Because the dendritic trees of these cells are large, spatial compartmentalization of resonant properties can be expected. Here, we use mathematical descriptions of spatially extended neurons to investigate the consequences of such a distal, dendritic localization of h-conductances for signal processing. While neurons with short dendrites do not exhibit a pronounced compartmentalization of resonance, i.e. the filter properties of dendrites and soma are similar, we find that neurons with longer dendrites ([Formula: see text] space constant) can show distinct filtering of dendritic and somatic inputs due to electrotonic segregation. Moreover, we show that for such neurons, experimental classification as resonant versus nonresonant can be misleading when based on somatic recordings, because for these morphologies a dendritic resonance could easily be undetectable when using somatic input. Nevertheless, noise-driven membrane-potential oscillations caused by dendritic resonance can propagate to the soma where they can be recorded, hence contrasting with the low-pass filtering at the soma. We conclude that non-uniform distributions of active conductances can underlie differential filtering of synaptic input in neurons with spatially extended dendrites, like pyramidal neurons, bearing relevance for the localization-dependent targeting of synaptic input pathways to these cells.

摘要

神经元的突触输入以频率依赖的方式进行处理,具有低通或共振响应特性。这些类型的滤波在神经网络中特定频率的信息流中起着关键作用。虽然特定离子电导产生共振的机制已得到充分研究,但对于产生共振的电导在神经元上的空间分布关注较少。在锥体神经元(哺乳动物大脑中主要的兴奋性细胞类型之一)中,实验已证明产生共振的h电导具有陡峭的梯度,朝着远端树突增加了60倍。由于这些细胞的树突树很大,可以预期共振特性的空间分隔。在这里,我们使用空间扩展神经元的数学描述来研究h电导在远端树突定位对信号处理的影响。虽然树突较短的神经元没有表现出明显的共振分隔,即树突和胞体的滤波特性相似,但我们发现树突较长([公式:见文本]空间常数)的神经元由于电紧张分隔,可以对树突和胞体输入进行不同的滤波。此外,我们表明,对于此类神经元,基于胞体记录将其实验分类为共振或非共振可能会产生误导,因为对于这些形态,当使用胞体输入时,树突共振很容易检测不到。然而,由树突共振引起的噪声驱动膜电位振荡可以传播到胞体并在那里被记录,因此与胞体处的低通滤波形成对比。我们得出结论,活性电导的非均匀分布可能是具有空间扩展树突的神经元(如锥体神经元)对突触输入进行差异滤波的基础,这与突触输入途径对这些细胞的定位依赖性靶向有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14cb/3818496/d63e5431ceca/pone.0078908.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验