Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
Robarts Research Institute, Western University, London, ON, Canada.
Nat Commun. 2024 May 14;15(1):4053. doi: 10.1038/s41467-024-48374-2.
The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.
海马体在空间导航中的作用主要在夜间活动的哺乳动物(如老鼠)中进行了研究,这些动物缺乏许多适应日光视觉的能力。在这里,我们证明在 3D 导航过程中,适应日光的新世界灵长类动物——普通狨猴,在保持静止的同时,主要通过快速的头部扫视来进行视觉探索。在主动运动期间,狨猴稳定头部,而老鼠则在移动时使用低速度的头部运动来扫描环境。普通狨猴海马体 CA3/CA1 区域的锥体神经元主要表现出对 3D 空间视图、头部方向和位置的混合选择性。独特的位置选择性很少见。抑制性中间神经元主要对角度头部速度和平移速度表现出混合选择性。最后,我们发现头部扫视会引发局部场电势振荡的 theta 相位重置。我们的研究结果表明,普通狨猴通过改变探索/导航策略及其对应的海马体特化来适应其日光生态位。