Suppr超能文献

多感觉控制海马体时空选择性。

Multisensory control of hippocampal spatiotemporal selectivity.

机构信息

W. M. Keck Center for Neurophysics, Integrative Center for Learning and Memory, and Brain Research Institute, University of California at Los Angeles, 90095.

Department of Physics and Astronomy, University of California at Los Angeles, 90095.

出版信息

Science. 2013 Jun 14;340(6138):1342-1346. doi: 10.1126/science.1232655. Epub 2013 May 2.

Abstract

The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.

摘要

海马体认知图被认为是由远距离视觉线索和自身运动线索驱动的。然而,其他感觉线索也会影响位置细胞。因此,我们在虚拟现实 (VR) 和真实世界 (RW) 中测量了大鼠海马体的活动。在 VR 中,位置细胞表现出很强的空间选择性;然而,只有 20%的细胞是轨迹活跃的,而在 RW 中则有 45%的细胞是轨迹活跃的。这表明远距离视觉和非前庭自身运动线索足以提供选择性,但 RW 中存在的前庭和其他感觉线索对于充分激活位置细胞群体是必要的。此外,双向细胞在 VR 中优先沿轨迹编码距离,而在 RW 中则编码绝对位置。综上所述,这些结果表明这些感觉线索在塑造海马体群体编码方面的贡献是不同的。在 VR 中,θ 频率降低,其速度依赖性被消除,但相位超前不受影响,这限制了控制海马体θ 振荡和时间编码的机制。这些结果揭示了感觉线索在控制海马体时空选择性和θ节律方面的协同和竞争相互作用。

相似文献

1
Multisensory control of hippocampal spatiotemporal selectivity.
Science. 2013 Jun 14;340(6138):1342-1346. doi: 10.1126/science.1232655. Epub 2013 May 2.
2
Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality.
Nat Neurosci. 2015 Jan;18(1):121-8. doi: 10.1038/nn.3884. Epub 2014 Nov 24.
4
Coherent Coding of Spatial Position Mediated by Theta Oscillations in the Hippocampus and Prefrontal Cortex.
J Neurosci. 2019 Jun 5;39(23):4550-4565. doi: 10.1523/JNEUROSCI.0106-19.2019. Epub 2019 Apr 2.
5
Intracellular dynamics of hippocampal place cells during virtual navigation.
Nature. 2009 Oct 15;461(7266):941-6. doi: 10.1038/nature08499.
6
The hippocampal code for space in Mongolian gerbils.
Hippocampus. 2019 Sep;29(9):787-801. doi: 10.1002/hipo.23075. Epub 2019 Feb 12.
8
Visual boundary cues suffice to anchor place and grid cells in virtual reality.
Curr Biol. 2024 May 20;34(10):2256-2264.e3. doi: 10.1016/j.cub.2024.04.026. Epub 2024 May 2.
9
Dynamic control of hippocampal spatial coding resolution by local visual cues.
Elife. 2019 Mar 1;8:e44487. doi: 10.7554/eLife.44487.

引用本文的文献

1
Multisensory coding of self-motion and its contribution to navigation.
Nat Rev Neurosci. 2025 Sep 15. doi: 10.1038/s41583-025-00970-x.
2
Open-source, high performance miniature 2-photon microscopy systems for freely behaving animals.
Nat Commun. 2025 Aug 3;16(1):7125. doi: 10.1038/s41467-025-62534-y.
3
Two-photon fiberscope with a proactive optoelectrical commutator for rotational resistance-free imaging in freely behaving rodents.
Neurophotonics. 2025 Apr;12(2):025016. doi: 10.1117/1.NPh.12.2.025016. Epub 2025 Jun 18.
6
Impaired spatial coding of the hippocampus in a dentate gyrus hypoplasia mouse model.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2416214122. doi: 10.1073/pnas.2416214122. Epub 2025 Jan 30.
7
Multiplexing of temporal and spatial information in the lateral entorhinal cortex.
Nat Commun. 2024 Dec 3;15(1):10533. doi: 10.1038/s41467-024-54932-5.
9
Shortcutting from self-motion signals reveals a cognitive map in mice.
Elife. 2024 Nov 11;13:RP95764. doi: 10.7554/eLife.95764.

本文引用的文献

1
Spontaneous persistent activity in entorhinal cortex modulates cortico-hippocampal interaction in vivo.
Nat Neurosci. 2012 Nov;15(11):1531-8. doi: 10.1038/nn.3236. Epub 2012 Oct 7.
2
The effects of GluA1 deletion on the hippocampal population code for position.
J Neurosci. 2012 Jun 27;32(26):8952-68. doi: 10.1523/JNEUROSCI.6460-11.2012.
3
Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons.
Hippocampus. 2012 Aug;22(8):1659-80. doi: 10.1002/hipo.22002. Epub 2012 Feb 27.
4
Sound-driven synaptic inhibition in primary visual cortex.
Neuron. 2012 Feb 23;73(4):814-28. doi: 10.1016/j.neuron.2011.12.026.
5
Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task.
J Neurophysiol. 2012 Apr;107(7):1822-34. doi: 10.1152/jn.00404.2011. Epub 2012 Jan 4.
6
Representation of non-spatial and spatial information in the lateral entorhinal cortex.
Front Behav Neurosci. 2011 Oct 28;5:69. doi: 10.3389/fnbeh.2011.00069. eCollection 2011.
7
Functional imaging of hippocampal place cells at cellular resolution during virtual navigation.
Nat Neurosci. 2010 Nov;13(11):1433-40. doi: 10.1038/nn.2648. Epub 2010 Oct 3.
8
Intracellular dynamics of hippocampal place cells during virtual navigation.
Nature. 2009 Oct 15;461(7266):941-6. doi: 10.1038/nature08499.
9
Grid cells and theta as oscillatory interference: theory and predictions.
Hippocampus. 2008;18(12):1157-74. doi: 10.1002/hipo.20518.
10
Internally generated cell assembly sequences in the rat hippocampus.
Science. 2008 Sep 5;321(5894):1322-7. doi: 10.1126/science.1159775.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验