Suppr超能文献

铜绿假单胞菌剂量反应与洗浴水感染。

Pseudomonas aeruginosa dose response and bathing water infection.

机构信息

UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia.

Department of Otorhinolaryngology, Head and Neck Surgery, The Queen Elizabeth Hospital, Woodville, SA, Australia.

出版信息

Epidemiol Infect. 2014 Mar;142(3):449-62. doi: 10.1017/S0950268813002690. Epub 2013 Nov 8.

Abstract

Pseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey's exponential 'single-hit' model and predict infection likelihood and severity (lesions/m2), respectively. 'Third-generation', mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review's findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.

摘要

铜绿假单胞菌是一种机会性病原体,主要与游泳池和热水浴缸中的滤泡炎和急性外耳炎有关。然而,感染风险仍然难以量化。本文综述了疾病病因学和细菌皮肤定植科学,以推进剂量反应理论的发展。从病原体密度预测疾病可能性的三种模型形式被确定。其中两种基于 Furumoto 和 Mickey 的指数“单次命中”模型,分别预测感染的可能性和严重程度(病变/平方米)。此外,还对“第三代”机制剂量反应算法的开发进行了概述。所提出的配方整合了分散、表皮相互作用和滤泡入侵。本文还详细介绍了需要考虑的不确定性,这些不确定性与水质、暴发、暴露时间、感染部位、生物膜、耳垢、环境因素(如皮肤饱和度、流体动力学)以及铜绿假单胞菌是内源性还是外源性有关。本文的研究结果用于提出一个概念性的感染模型,并确定研究重点,包括泳池剂量反应模型、表皮生态学和基于感染可能性的卫生管理。

相似文献

1
Pseudomonas aeruginosa dose response and bathing water infection.
Epidemiol Infect. 2014 Mar;142(3):449-62. doi: 10.1017/S0950268813002690. Epub 2013 Nov 8.
2
Dose-response algorithms for water-borne Pseudomonas aeruginosa folliculitis.
Epidemiol Infect. 2015 May;143(7):1524-37. doi: 10.1017/S0950268814002532. Epub 2014 Oct 2.
3
Risk assessment of Pseudomonas aeruginosa in water.
Rev Environ Contam Toxicol. 2009;201:71-115. doi: 10.1007/978-1-4419-0032-6_3.
6
Pool-associated Pseudomonas aeruginosa dermatitis and other bathing-associated infections.
Infect Control. 1985 Oct;6(10):398-401. doi: 10.1017/s0195941700063475.
7
[Whirlpool and pseudomonas infection--a local outbreak].
Tidsskr Nor Laegeforen. 2007 Jun 28;127(13):1779-81.
8
Pseudomonas aeruginosa folliculitis after shower/bath exposure.
Int J Dermatol. 2000 Apr;39(4):270-3. doi: 10.1046/j.1365-4362.2000.00931.x.
9
Prevalence and antimicrobial-resistance of Pseudomonas aeruginosa in swimming pools and hot tubs.
Int J Environ Res Public Health. 2011 Feb;8(2):554-64. doi: 10.3390/ijerph8020554. Epub 2011 Feb 18.
10
Hot tub folliculitis or hot hand-foot syndrome caused by Pseudomonas aeruginosa.
J Am Acad Dermatol. 2007 Oct;57(4):596-600. doi: 10.1016/j.jaad.2007.04.004. Epub 2007 Jul 19.

引用本文的文献

1
Vibrio cholerae-An emerging pathogen in Austrian bathing waters?
Wien Klin Wochenschr. 2023 Nov;135(21-22):597-608. doi: 10.1007/s00508-023-02241-0. Epub 2023 Aug 2.
2
Current concepts on Pseudomonas aeruginosa interaction with human airway epithelium.
PLoS Pathog. 2023 Mar 30;19(3):e1011221. doi: 10.1371/journal.ppat.1011221. eCollection 2023 Mar.
3
Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety.
Foods. 2021 Sep 8;10(9):2117. doi: 10.3390/foods10092117.
4
Faecal Indicator Bacteria and in Marine Coastal Waters: Is there a Relationship?
Pathogens. 2019 Dec 21;9(1):13. doi: 10.3390/pathogens9010013.
5
An outbreak of skin rash traced to a portable floating tank in Norway, May 2017.
Euro Surveill. 2019 Sep;24(38). doi: 10.2807/1560-7917.ES.2019.24.38.1900134.
6
The impact of lifestyle upon the probability of late bacterial infection after soft-tissue filler augmentation.
Infect Drug Resist. 2019 Apr 23;12:855-863. doi: 10.2147/IDR.S200357. eCollection 2019.
7
Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives.
Part Fibre Toxicol. 2018 Nov 20;15(1):46. doi: 10.1186/s12989-018-0282-0.
8
Quantitative Microbial Risk Assessment and Opportunist Waterborne Infections⁻Are There Too Many Gaps to Fill?
Int J Environ Res Public Health. 2018 Jun 1;15(6):1150. doi: 10.3390/ijerph15061150.
9
Pseudomonas aeruginosa in Swimming Pool Water: Evidences and Perspectives for a New Control Strategy.
Int J Environ Res Public Health. 2016 Sep 15;13(9):919. doi: 10.3390/ijerph13090919.
10
Dynamics of Vibrio cholerae abundance in Austrian saline lakes, assessed with quantitative solid-phase cytometry.
Environ Microbiol. 2015 Nov;17(11):4366-78. doi: 10.1111/1462-2920.12861. Epub 2015 May 18.

本文引用的文献

1
Cellular microbiology and molecular ecology of Legionella-amoeba interaction.
Virulence. 2013 May 15;4(4):307-14. doi: 10.4161/viru.24290. Epub 2013 Mar 27.
2
The risk of contracting infectious diseases in public swimming pools. A review.
Ann Ist Super Sanita. 2012;48(4):374-86. doi: 10.4415/ANN_12_04_05.
3
A risk assessment of Pseudomonas aeruginosa in swimming pools: a review.
J Water Health. 2012 Jun;10(2):181-96. doi: 10.2166/wh.2012.020.
4
Cell orientation of swimming bacteria: from theoretical simulation to experimental evaluation.
Sci China Life Sci. 2012 Mar;55(3):202-9. doi: 10.1007/s11427-012-4298-7. Epub 2012 Apr 14.
5
Turnabout is fair play: use of the bacterial Multivalent Adhesion Molecule 7 as an antimicrobial agent.
Virulence. 2012 Jan-Feb;3(1):68-71. doi: 10.4161/viru.3.1.18172. Epub 2012 Jan 1.
6
A model for Vibrio cholerae colonization of the human intestine.
J Theor Biol. 2011 Nov 21;289:247-58. doi: 10.1016/j.jtbi.2011.08.028. Epub 2011 Sep 1.
7
Biofilms in drinking water and their role as reservoir for pathogens.
Int J Hyg Environ Health. 2011 Nov;214(6):417-23. doi: 10.1016/j.ijheh.2011.05.009. Epub 2011 Jun 22.
8
State of the art in benefit-risk analysis: food microbiology.
Food Chem Toxicol. 2012 Jan;50(1):33-9. doi: 10.1016/j.fct.2011.06.005. Epub 2011 Jun 12.
9
Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa.
Biophys J. 2011 Apr 6;100(7):1608-16. doi: 10.1016/j.bpj.2011.02.020.
10
Idling time of motile bacteria contributes to retardation and dispersion in sand porous medium.
Environ Sci Technol. 2011 May 1;45(9):3945-51. doi: 10.1021/es104041t. Epub 2011 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验