Mu Dashuai, Li Chenyang, Zhang Xuchen, Li Xiongbiao, Shi Liang, Ren Ang, Zhao Mingwen
College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
Environ Microbiol. 2014 Jun;16(6):1709-28. doi: 10.1111/1462-2920.12326. Epub 2013 Dec 17.
Ganoderma lucidum has drawn worldwide interest with regard to its secondary metabolism and pharmaceutical activity. However, the development of such research has been limited because of a lack of basic biological knowledge. Nicotinamide adenine dinucleotide phosphate oxidases (Nox) have recently been highlighted because of the many important biological roles in plants and animals; however, the exact functions of Nox are still not fully understood in fungi. In this study, we identified two Nox isoforms (NoxA and NoxB) and a regulator, NoxR. RNA interference was used, and silencing of the Nox isoforms and NoxR expression indicated a central role for these genes in hyphal branching, fruiting body development, reactive oxygen species (ROS) generation, ROS resistance and ganoderic acid biosynthesis regulation. Further mechanistic investigation revealed that Nox-generated ROS elevated cytosolic Ca(2+) levels by activating a plasma membrane Ca(2+) influx pathway, thereby inducing the Ca(2+) signal pathway to regulate ganoderic acid biosynthesis and hyphal branching. Importantly, our results highlight the Nox functions in signal crosstalk between ROS and Ca(2+), and these findings provide an excellent opportunity to identify the potential pathway linking ROS networks to calcium signalling in fungi and suggest that plants, animals and fungi share a conserved signal-crosstalk mechanism.
灵芝因其次生代谢和药用活性而引起了全球关注。然而,由于缺乏基础生物学知识,此类研究的发展受到了限制。烟酰胺腺嘌呤二核苷酸磷酸氧化酶(Nox)最近受到关注,因为它在植物和动物中具有许多重要的生物学作用;然而,Nox在真菌中的具体功能仍未完全了解。在本研究中,我们鉴定了两种Nox亚型(NoxA和NoxB)以及一种调节因子NoxR。我们使用了RNA干扰技术,Nox亚型和NoxR表达的沉默表明这些基因在菌丝分支、子实体发育、活性氧(ROS)生成、ROS抗性和灵芝酸生物合成调控中起核心作用。进一步的机制研究表明,Nox产生的ROS通过激活质膜Ca(2+)内流途径提高了胞质Ca(2+)水平,从而诱导Ca(2+)信号通路来调节灵芝酸生物合成和菌丝分支。重要的是,我们的结果突出了Nox在ROS和Ca(2+)信号串扰中的功能,这些发现为确定真菌中连接ROS网络与钙信号的潜在途径提供了绝佳机会,并表明植物、动物和真菌共享一种保守的信号串扰机制。