Suppr超能文献

使用压缩感知的加速径向傅里叶速度编码

Accelerated radial Fourier-velocity encoding using compressed sensing.

作者信息

Hilbert Fabian, Wech Tobias, Hahn Dietbert, Köstler Herbert

机构信息

Institute of Radiology, University of Würzburg, Germany.

Institute of Radiology, University of Würzburg, Germany; Comprehensive Heart Failure Center (CHFC), University of Würzburg, Germany.

出版信息

Z Med Phys. 2014 Sep;24(3):190-200. doi: 10.1016/j.zemedi.2013.10.005. Epub 2013 Nov 13.

Abstract

PURPOSE

Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image.

MATERIALS AND METHODS

We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image.

RESULTS

Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements.

CONCLUSION

Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus, compared to normal Phase Contrast measurements delivering only mean velocities, no additional scan time is necessary to retrieve meaningful velocity spectra in small vessels.

摘要

目的

相位对比磁共振成像(MRI)是一种用于非侵入性测定血管内血流速度的工具。由于相位对比MRI仅测量每个体素的单个平均速度,因此仅适用于明显大于体素大小的血管。相比之下,傅里叶速度编码测量体素内的整个速度分布,但需要更长的采集时间。对于在空间分辨率尺度上准确诊断血管狭窄,了解体素的速度分布很重要。我们的目的是在传统相位对比图像所需的采集时间内,通过加速傅里叶速度编码来确定速度分布。

材料与方法

我们采用心电图触发的径向电影采集方式,对健康志愿者的股动脉进行成像。通过欠采样加速数据采集,同时利用压缩感知重建缺失数据。通过高分辨率相位对比图像评估血管的速度谱,并与全采样和欠采样傅里叶速度编码的谱进行比较。通过欠采样,有可能将傅里叶速度编码的扫描时间缩短至传统相位对比图像所需的持续时间。

结果

具有12种不同速度编码的全采样数据集的采集时间为40分钟。通过应用12.6倍的回顾性欠采样,生成了一个采集时间等于3:10分钟的数据集,这与传统相位对比测量相似。全采样和欠采样傅里叶速度编码图像的速度谱吻合良好,与相位对比测量的速度图相比,显示出相同的最大速度。

结论

压缩感知被证明能够可靠地重建傅里叶速度编码数据。我们的结果表明,傅里叶速度编码能够准确确定体素大小量级血管中的速度分布。因此,与仅提供平均速度的常规相位对比测量相比,无需额外的扫描时间即可在小血管中获取有意义的速度谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验