Suppr超能文献

疟疾传播动力学年龄结构模型的数学分析

Mathematical analysis of an age-structured model for malaria transmission dynamics.

作者信息

Forouzannia Farinaz, Gumel Abba B

机构信息

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.

出版信息

Math Biosci. 2014 Jan;247:80-94. doi: 10.1016/j.mbs.2013.10.011. Epub 2013 Nov 15.

Abstract

A new deterministic model for assessing the role of age-structure on the transmission dynamics of malaria in a community is designed. Rigorous qualitative analysis of the model reveals that it undergoes the phenomenon of backward bifurcation, where the stable disease-free equilibrium of the model co-exists with a stable endemic equilibrium when the associated reproduction number (denoted by R0) is less than unity. It is shown that the backward bifurcation phenomenon is caused by the malaria-induced mortality in humans. A special case of the model is shown to have a unique endemic equilibrium whenever the associated reproduction threshold exceeds unity. Further analyses reveal that adding age-structure to a basic model for malaria transmission in a community does not alter the qualitative dynamics of the basic model, with respect to the existence and asymptotic stability of the associated equilibria and the backward bifurcation property of the model. Numerical simulations of the model show that the cumulative number of new cases of infection and malaria-induced mortality increase with increasing average lifespan and birth rate of mosquitoes.

摘要

设计了一个新的确定性模型,用于评估年龄结构在社区疟疾传播动态中的作用。对该模型进行的严格定性分析表明,它会出现反向分岔现象,即当相关繁殖数(用R0表示)小于1时,模型的稳定无病平衡点与稳定的地方病平衡点共存。结果表明,反向分岔现象是由疟疾导致的人类死亡率引起的。该模型的一个特殊情况表明,只要相关繁殖阈值超过1,就会有唯一的地方病平衡点。进一步分析表明,在社区疟疾传播的基本模型中加入年龄结构,不会改变基本模型在相关平衡点的存在性、渐近稳定性以及模型的反向分岔特性方面的定性动态。该模型的数值模拟表明,新感染病例的累积数量和疟疾导致的死亡率随着蚊子平均寿命和出生率的增加而增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验