Suppr超能文献

考虑季节因素的肺炎传播模型的最优控制:基于雅加达发病率数据的研究

Optimal control of pneumonia transmission model with seasonal factor: Learning from Jakarta incidence data.

作者信息

Aldila Dipo, Awdinda Nadya, Herdicho Faishal F, Ndii Meksianis Z, Chukwu Chidozie W

机构信息

Department of Mathematics, Universitas Indonesia, Depok 16424, Indonesia.

Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia.

出版信息

Heliyon. 2023 Jul 13;9(7):e18096. doi: 10.1016/j.heliyon.2023.e18096. eCollection 2023 Jul.

Abstract

Pneumonia is a dangerous disease that can lead to death without proper treatment. It is caused by a bacterial infection that leads to the inflammation of the air sacs in human lungs and potentially results in a lung abscess if not properly untreated. Here in this article we introduced a novel mathematical model to investigate the potential impact of Pneumonia treatments on disease transmission dynamics. The model is then validated against data from Jakarta City, Indonesia. In the model, the infection stage in infected individuals is categorized into three stages: the Exposed, Congestion and Hepatization, and the Resolution stage. Mathematical analysis shows that the disease-free equilibrium is always locally asymptotically stable when the basic reproduction number is less than one and unstable when larger than one. The endemic equilibrium only exists when the basic reproduction number is larger than one. Our proposed model always exhibits a forward bifurcation when the basic reproduction number is equal to one, which indicates local stability of the endemic equilibrium when the basic reproduction number is larger than one but close to one. A global sensitivity analysis shows that the infection parameter is the most influential parameter in determining the size of the total infected individual in the endemic equilibrium point. Furthermore, we also found that the hospitalization and the acceleration of the treatment duration can be used to control the level of endemic size. An optimal control problem was constructed from the earlier model and analyzed using the Pontryagin Maximum Principle. We find that the implementation of treatment in the earlier stage of infected individuals is needed to avoid a more significant outbreak of Pneumonia in a long-term intervention.

摘要

肺炎是一种危险的疾病,若未得到恰当治疗可能会导致死亡。它由细菌感染引起,会导致人类肺部气囊发炎,如果未得到妥善治疗,还可能引发肺脓肿。在本文中,我们引入了一种新颖的数学模型来研究肺炎治疗对疾病传播动态的潜在影响。该模型随后根据印度尼西亚雅加达市的数据进行了验证。在模型中,感染个体的感染阶段分为三个阶段:暴露期、充血期和肝变期以及消散期。数学分析表明,当基本再生数小于1时,无病平衡点总是局部渐近稳定的,而当大于1时则不稳定。地方病平衡点仅在基本再生数大于1时存在。当基本再生数等于1时,我们提出的模型总是呈现前向分岔,这表明当基本再生数大于1但接近1时地方病平衡点的局部稳定性。全局敏感性分析表明,感染参数是决定地方病平衡点处总感染个体规模的最具影响力的参数。此外,我们还发现住院治疗和缩短治疗持续时间可用于控制地方病规模水平。根据早期模型构建了一个最优控制问题,并使用庞特里亚金极大值原理进行了分析。我们发现,在长期干预中,需要在感染个体的早期阶段实施治疗,以避免肺炎更严重的爆发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c09a/10375561/1b77f1b63187/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验