Suppr超能文献

利用有效数值方案分析非线性疟疾传播传染病模型的稳定性。

Stability analysis of a nonlinear malaria transmission epidemic model using an effective numerical scheme.

机构信息

School of Humanities and Law, Gannan University of Science and Technology, Ganzhou, 341000, Jiangxi, People's Republic of China.

Department of Computer Science, Applied College, Taibah University, Medina, 42353, Saudi Arabia.

出版信息

Sci Rep. 2024 Jul 29;14(1):17413. doi: 10.1038/s41598-024-66503-1.

Abstract

Malaria is a fever condition that results from Plasmodium parasites, which are transferred to humans by the attacks of infected female Anopheles mosquitos. The deterministic compartmental model was examined using stability theory of differential equations. The reproduction number was obtained to be asymptotically stable conditions for the disease-free, and the endemic equilibria were determined. More so, the qualitatively evaluated model incorporates time-dependent variable controls which was aimed at reducing the proliferation of malaria disease. The reproduction number R was determined to be an asymptotically stable condition for disease free and endemic equilibria. In this paper, we used various schemes such as Runge-Kutta order 4 (RK-4) and non-standard finite difference (NSFD). All of the schemes produce different results, but the most appropriate scheme is NSFD. This is true for all step sizes. Various criteria are used in the NSFD scheme to assess the local and global stability of disease-free and endemic equilibrium points. The Routh-Hurwitz condition is used to validate the local stability and Lyapunov stability theorem is used to prove the global asymptotic stability. Global asymptotic stability is proven for the disease-free equilibrium when . The endemic equilibrium is investigated for stability when . All of the aforementioned schemes and their effects are also numerically demonstrated. The comparative analysis demonstrates that NSFD is superior in every way for the analysis of deterministic epidemic models. The theoretical effects and numerical simulations provided in this text may be used to predict the spread of infectious diseases.

摘要

疟疾是一种由疟原虫引起的发热病症,通过受感染的雌性按蚊叮咬传播给人类。使用微分方程稳定性理论研究了确定性房室模型。获得了无病和地方病平衡点的繁殖数渐近稳定条件。更重要的是,定性评估模型包含了旨在减少疟疾疾病传播的时变变量控制。繁殖数 R 是无病和地方病平衡点的渐近稳定条件。在本文中,我们使用了各种方案,如四阶龙格库塔(RK-4)和非标准有限差分(NSFD)。所有方案都产生了不同的结果,但最合适的方案是 NSFD。对于所有步长大小都是如此。在 NSFD 方案中使用了各种标准来评估无病和地方病平衡点的局部和全局稳定性。劳斯-赫尔维茨条件用于验证局部稳定性,而李亚普诺夫稳定性定理用于证明全局渐近稳定性。当 时,证明了无病平衡点的全局渐近稳定性。当 时,研究了地方病平衡点的稳定性。还对所有上述方案及其影响进行了数值演示。比较分析表明,NSFD 在分析确定性传染病模型方面具有优越性。本文提供的理论影响和数值模拟可用于预测传染病的传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cb8/11286927/3b6fb254302a/41598_2024_66503_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验