Suppr超能文献

用于复发事件数据的灵活半参数变换模型。

A flexible semiparametric transformation model for recurrent event data.

作者信息

Dong Lin, Sun Liuquan

机构信息

Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing , 100190, People's Republic of China.

出版信息

Lifetime Data Anal. 2015 Jan;21(1):20-41. doi: 10.1007/s10985-013-9285-1. Epub 2013 Nov 17.

Abstract

In this article, we propose a class of semiparametric transformation models for recurrent event data, in which the baseline mean function is allowed to depend on covariates through an additive model, and some covariate effects are allowed to be time-varying. For inference on the model parameters, estimating equation approaches are developed, and the asymptotic properties of the resulting estimators are established. In addition, a lack-of-fit test is presented to assess the adequacy of the model. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a bladder cancer study is illustrated.

摘要

在本文中,我们针对复发事件数据提出了一类半参数变换模型,其中基线均值函数可以通过一个加性模型依赖于协变量,并且允许一些协变量效应随时间变化。对于模型参数的推断,我们开发了估计方程方法,并建立了所得估计量的渐近性质。此外,还提出了一个失拟检验来评估模型的拟合优度。通过模拟研究评估了所提出估计量的有限样本行为,并展示了其在一项膀胱癌研究中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验