From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan.
the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
J Biol Chem. 2014 Nov 7;289(45):31212-23. doi: 10.1074/jbc.M114.598177. Epub 2014 Sep 25.
V-ATPase (V(o)V1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in V(o)V1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae V(o)V1 (EhV(o)V1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhV(o)V1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhV(o)V1 only showed the "clear" state without apparent backward steps, whereas EhV1 showed two states, "clear" and "unclear." Furthermore, EhV(o)V1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhV(o)V1 showed faster rotation than EhV1, and the torque of EhV(o)V1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhV(o)V1. These results indicate that rotor-stator interactions of the V(o) moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhV(o)V1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhV(o)V1.
V-ATPase (V(o)V1) 通过机械旋转将 ATP 的化学自由能转化为跨细胞膜的离子动力。这种能量转换需要 V(o)V1 中的转子和定子之间的适当相互作用,以实现化学反应、扭矩产生和离子传输之间的紧密偶联。我们开发了一种用于屎肠球菌 V-ATPase (EhV(o)V1) 的大肠杆菌表达系统,并建立了一种单分子旋转测定法来测量产生的扭矩。重组和天然 EhV(o)V1 对钠离子和 ATP 浓度的 ATP 水解活性依赖性几乎相同,表明它们具有功能等效性。在高 ATP 浓度下使用低负载探针的单分子旋转测定中,EhV(o)V1 仅显示“清晰”状态,没有明显的反向步骤,而 EhV1 显示两种状态,“清晰”和“不清晰”。此外,EhV(o)V1 的旋转速度比 EhV1 慢,而 EhV1 则没有观察到 120°间隔的三个明显停顿。当使用大探针时,EhV(o)V1 的旋转速度比 EhV1 快,并且从连续旋转估计的 EhV(o)V1 的扭矩几乎是 EhV1 的两倍。另一方面,EhV1 在清晰状态下的步进扭矩与 EhV(o)V1 的步进扭矩相当。这些结果表明,V(o) 部分的转子-定子相互作用和/或钠离子转运限制了由 V1 部分驱动的旋转,并且 EhV(o)V1 的转子-定子相互作用通过两个外围茎稳定,产生的扭矩比分离的 EhV1 大。然而,扭矩值远低于其他旋转 ATP 酶,这意味着 EhV(o)V1 的能量转换效率较低。