Suppr超能文献

肠球菌 V-ATP 酶的扭矩生成。

Torque generation of Enterococcus hirae V-ATPase.

机构信息

From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan.

the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.

出版信息

J Biol Chem. 2014 Nov 7;289(45):31212-23. doi: 10.1074/jbc.M114.598177. Epub 2014 Sep 25.

Abstract

V-ATPase (V(o)V1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in V(o)V1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae V(o)V1 (EhV(o)V1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhV(o)V1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhV(o)V1 only showed the "clear" state without apparent backward steps, whereas EhV1 showed two states, "clear" and "unclear." Furthermore, EhV(o)V1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhV(o)V1 showed faster rotation than EhV1, and the torque of EhV(o)V1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhV(o)V1. These results indicate that rotor-stator interactions of the V(o) moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhV(o)V1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhV(o)V1.

摘要

V-ATPase (V(o)V1) 通过机械旋转将 ATP 的化学自由能转化为跨细胞膜的离子动力。这种能量转换需要 V(o)V1 中的转子和定子之间的适当相互作用,以实现化学反应、扭矩产生和离子传输之间的紧密偶联。我们开发了一种用于屎肠球菌 V-ATPase (EhV(o)V1) 的大肠杆菌表达系统,并建立了一种单分子旋转测定法来测量产生的扭矩。重组和天然 EhV(o)V1 对钠离子和 ATP 浓度的 ATP 水解活性依赖性几乎相同,表明它们具有功能等效性。在高 ATP 浓度下使用低负载探针的单分子旋转测定中,EhV(o)V1 仅显示“清晰”状态,没有明显的反向步骤,而 EhV1 显示两种状态,“清晰”和“不清晰”。此外,EhV(o)V1 的旋转速度比 EhV1 慢,而 EhV1 则没有观察到 120°间隔的三个明显停顿。当使用大探针时,EhV(o)V1 的旋转速度比 EhV1 快,并且从连续旋转估计的 EhV(o)V1 的扭矩几乎是 EhV1 的两倍。另一方面,EhV1 在清晰状态下的步进扭矩与 EhV(o)V1 的步进扭矩相当。这些结果表明,V(o) 部分的转子-定子相互作用和/或钠离子转运限制了由 V1 部分驱动的旋转,并且 EhV(o)V1 的转子-定子相互作用通过两个外围茎稳定,产生的扭矩比分离的 EhV1 大。然而,扭矩值远低于其他旋转 ATP 酶,这意味着 EhV(o)V1 的能量转换效率较低。

相似文献

1
Torque generation of Enterococcus hirae V-ATPase.
J Biol Chem. 2014 Nov 7;289(45):31212-23. doi: 10.1074/jbc.M114.598177. Epub 2014 Sep 25.
2
Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase.
J Biol Chem. 2013 Nov 8;288(45):32700-32707. doi: 10.1074/jbc.M113.506329. Epub 2013 Oct 2.
3
Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of V-ATPase.
J Biol Chem. 2019 Nov 8;294(45):17017-17030. doi: 10.1074/jbc.RA119.008947. Epub 2019 Sep 13.
4
Molecular structure and rotary dynamics of Enterococcus hirae V₁-ATPase.
IUBMB Life. 2014 Sep;66(9):624-30. doi: 10.1002/iub.1311. Epub 2014 Sep 17.
5
Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between V and V motors.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2210204119. doi: 10.1073/pnas.2210204119. Epub 2022 Oct 10.
6
Rotation of artificial rotor axles in rotary molecular motors.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11214-11219. doi: 10.1073/pnas.1605640113. Epub 2016 Sep 19.
8
Structure and dynamics of rotary V motor.
Cell Mol Life Sci. 2018 May;75(10):1789-1802. doi: 10.1007/s00018-018-2758-3. Epub 2018 Jan 31.
9
Rotation scheme of V1-motor is different from that of F1-motor.
Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):17929-33. doi: 10.1073/pnas.0507764102. Epub 2005 Dec 5.
10
Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover.
Commun Biol. 2023 Jul 28;6(1):755. doi: 10.1038/s42003-023-05110-8.

引用本文的文献

1
The molecular mechanism of ATP synthase constrains the evolutionary landscape of chemiosmosis.
Biophys J. 2025 Jul 1;124(13):2103-2119. doi: 10.1016/j.bpj.2025.05.017. Epub 2025 May 19.
2
ATP synthesis of Enterococcus hirae V-ATPase driven by sodium motive force.
J Biol Chem. 2025 Apr;301(4):108422. doi: 10.1016/j.jbc.2025.108422. Epub 2025 Mar 19.
3
Visualizing Single V-ATPase Rotation Using Janus Nanoparticles.
Nano Lett. 2024 Dec 11;24(49):15638-15644. doi: 10.1021/acs.nanolett.4c04109. Epub 2024 Nov 22.
4
Na-V-ATPase inhibitor curbs VRE growth and unveils Na pathway structure.
Nat Struct Mol Biol. 2025 Mar;32(3):450-458. doi: 10.1038/s41594-024-01419-y. Epub 2024 Nov 21.
5
Visualizing Single V-ATPase Rotation Using Janus Nanoparticles.
bioRxiv. 2024 Aug 22:2024.08.22.609254. doi: 10.1101/2024.08.22.609254.
6
Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover.
Commun Biol. 2023 Jul 28;6(1):755. doi: 10.1038/s42003-023-05110-8.
7
Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between V and V motors.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2210204119. doi: 10.1073/pnas.2210204119. Epub 2022 Oct 10.
8
Scattering-based Light Microscopy: From Metal Nanoparticles to Single Proteins.
Chem Rev. 2021 Oct 13;121(19):11937-11970. doi: 10.1021/acs.chemrev.1c00271. Epub 2021 Sep 29.
9
Crystalline chitin hydrolase is a burnt-bridge Brownian motor.
Biophys Physicobiol. 2020 Jun 9;17:51-58. doi: 10.2142/biophysico.BSJ-2020004. eCollection 2020.
10
The catalytic dwell in ATPases is not crucial for movement against applied torque.
Nat Chem. 2020 Dec;12(12):1187-1192. doi: 10.1038/s41557-020-0549-6. Epub 2020 Sep 21.

本文引用的文献

1
Rotary ATPases--dynamic molecular machines.
Curr Opin Struct Biol. 2014 Apr;25:40-8. doi: 10.1016/j.sbi.2013.11.013. Epub 2013 Dec 21.
2
Eukaryotic V-ATPase: novel structural findings and functional insights.
Biochim Biophys Acta. 2014 Jun;1837(6):857-79. doi: 10.1016/j.bbabio.2014.01.018. Epub 2014 Feb 4.
3
Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase.
J Biol Chem. 2013 Nov 8;288(45):32700-32707. doi: 10.1074/jbc.M113.506329. Epub 2013 Oct 2.
4
Single-molecule analysis of F0F1-ATP synthase inhibited by N,N-dicyclohexylcarbodiimide.
J Biol Chem. 2013 Sep 6;288(36):25717-25726. doi: 10.1074/jbc.M113.482455. Epub 2013 Jul 26.
5
Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus.
J Mol Biol. 2013 Aug 9;425(15):2699-708. doi: 10.1016/j.jmb.2013.04.022. Epub 2013 Apr 29.
6
Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures.
Nature. 2013 Jan 31;493(7434):703-7. doi: 10.1038/nature11778. Epub 2013 Jan 13.
7
High-resolution single-molecule characterization of the enzymatic states in Escherichia coli F1-ATPase.
Philos Trans R Soc Lond B Biol Sci. 2012 Dec 24;368(1611):20120023. doi: 10.1098/rstb.2012.0023. Print 2013 Feb 5.
8
The dynamic stator stalk of rotary ATPases.
Nat Commun. 2012 Feb 21;3:687. doi: 10.1038/ncomms1693.
9
Kinetic equivalence of transmembrane pH and electrical potential differences in ATP synthesis.
J Biol Chem. 2012 Mar 16;287(12):9633-9. doi: 10.1074/jbc.M111.335356. Epub 2012 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验