Institute of Science and Technology Austria, Klosterneuberg 3400, Austria.
Science. 2019 Aug 23;365(6455). doi: 10.1126/science.aaw9144.
V (vacuolar)/A (archaeal)-type adenosine triphosphatases (ATPases), found in archaea and eubacteria, couple ATP hydrolysis or synthesis to proton translocation across the plasma membrane using the rotary-catalysis mechanism. They belong to the V-type ATPase family, which differs from the mitochondrial/chloroplast F-type ATP synthases in overall architecture. We solved cryo-electron microscopy structures of the intact V/A-ATPase, reconstituted into lipid nanodiscs, in three rotational states and two substates. These structures indicate substantial flexibility between V and V in a working enzyme, which results from mechanical competition between central shaft rotation and resistance from the peripheral stalks. We also describe details of adenosine diphosphate inhibition release, V-V torque transmission, and proton translocation, which are relevant for the entire V-type ATPase family.
V(液泡)/A(古菌)-型三磷酸腺苷酶(ATPases)存在于古菌和细菌中,它们利用旋转催化机制将 ATP 水解或合成与质子跨质膜转运偶联。它们属于 V 型 ATP 酶家族,与线粒体/叶绿体 F 型 ATP 合酶在整体结构上有所不同。我们解决了完整的 V/A-ATPase 的冷冻电镜结构,该酶重新组装到脂质纳米盘中,在三种旋转状态和两种亚状态下。这些结构表明,在工作酶中 V 和 V 之间具有很大的灵活性,这是由于中心轴旋转的机械竞争和外围茎的阻力所致。我们还描述了与整个 V 型 ATP 酶家族相关的腺苷二磷酸抑制释放、V-V 扭矩传递和质子转运的细节。