AFRC Animal Breeding Research Organisation, West Mains Road, EH9 3JQ, Edinburgh, Scotland.
Theor Appl Genet. 1986 Jul;72(4):466-76. doi: 10.1007/BF00289528.
The precision of estimates of genetic variances and covariances obtained from multivariate selection experiments of various designs are discussed. The efficiencies of experimental designs are compared using criteria based on a confidence region of the estimated genetic parameters, with estimation using both responses and selection differentials and offspring-parent regression. A good selection criterion is shown to be to select individuals as parents using an index of the sums of squares and crossproducts of the phenotypic measurements. Formulae are given for the optimum selection proportion when the relative numbers of individuals in the parent and progeny generations are fixed or variable. Although the optimum depends on "a priori" knowledge of the genetic parameters to be estimated, the designs are very robust to poor estimates. For bivariate uncorrelated data, the variance of the estimated genetic parameters can be reduced by approximately 0.4 relative to designs of a more conventional nature when half of the individuals are selected on one trait and half on the other trait. There are larger reductions in variances if the traits are correlated.
讨论了从各种设计的多元选择实验中获得的遗传方差和协方差估计的精度。使用基于估计遗传参数置信区间的标准,通过使用响应和选择差异以及后代-亲本回归来比较实验设计的效率。证明了一个好的选择标准是使用表型测量的平方和叉积的和的指数选择父母个体。给出了当父代和后代个体数量固定或可变时最优选择比例的公式。尽管最优选择取决于要估计的遗传参数的“先验”知识,但这些设计对较差的估计非常稳健。对于二元不相关数据,当一半个体根据一个性状选择,另一半根据另一个性状选择时,与更传统的设计相比,估计遗传参数的方差可以减少约 0.4。如果性状相关,则方差的减少更大。