Department of Biology and Graduate Program in Evolution, Ecology, and Organismal Biology, University of California Riverside, California, 92521.
Ecol Evol. 2015 Feb;5(3):590-7. doi: 10.1002/ece3.1361. Epub 2015 Jan 8.
Populations often contain discrete classes or morphs (e.g., sexual dimorphisms, wing dimorphisms, trophic dimorphisms) characterized by distinct patterns of trait expression. In quantitative genetic analyses, the different morphs can be considered as different environments within which traits are expressed. Genetic variances and covariances can then be estimated independently for each morph or in a combined analysis. In the latter case, morphs can be considered as separate environments in a bivariate analysis or entered as fixed effects in a univariate analysis. Although a common approach, we demonstrate that the latter produces downwardly biased estimates of additive genetic variance and heritability unless the quantitative genetic architecture of the traits concerned is perfectly correlated between the morphs. This result is derived for four widely used quantitative genetic variance partitioning methods. Given that theory predicts the evolution of genotype-by-environment (morph) interactions as a consequence of selection favoring different trait combinations in each morph, we argue that perfect correlations between the genetic architectures of the different morphs are unlikely. A sampling of the recent literature indicates that the majority of researchers studying traits expressed in different morphs recognize this and do estimate morph-specific quantitative genetic architecture. However, ca. 16% of the studies in our sample utilized only univariate, fixed-effects models. We caution against this approach and recommend that it be used only if supported by evidence that the genetic architectures of the different morphs do not differ.
群体中通常包含具有不同特征表现模式的离散类或形态(例如,性二态性、翅二态性、营养二态性)。在数量遗传学分析中,可以将不同的形态视为不同的环境,其中特征得到表达。然后,可以独立地为每个形态或在综合分析中估计遗传方差和协方差。在后一种情况下,可以将形态视为双变量分析中的不同环境,或者在单变量分析中作为固定效应输入。尽管这是一种常见的方法,但我们证明,除非有关特征的数量遗传结构在形态之间完全相关,否则后者会产生向下偏的加性遗传方差和遗传力估计。这个结果是针对四种广泛使用的数量遗传方差分解方法推导出来的。鉴于理论预测基因型-环境(形态)相互作用的进化是由于选择在每个形态中有利于不同的特征组合,我们认为不同形态的遗传结构之间的完美相关性不太可能。对最近文献的抽样表明,研究不同形态中表达的特征的大多数研究人员认识到这一点,并确实估计了特定形态的数量遗传结构。然而,我们的样本中约有 16%的研究仅使用了单变量、固定效应模型。我们对此方法提出警告,并建议仅在有证据表明不同形态的遗传结构没有差异时才使用该方法。