Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States.
J Chem Inf Model. 2014 Jan 27;54(1):1-4. doi: 10.1021/ci400572x. Epub 2014 Jan 8.
We introduce a simple MODelability Index (MODI) that estimates the feasibility of obtaining predictive QSAR models (correct classification rate above 0.7) for a binary data set of bioactive compounds. MODI is defined as an activity class-weighted ratio of the number of nearest-neighbor pairs of compounds with the same activity class versus the total number of pairs. The MODI values were calculated for more than 100 data sets, and the threshold of 0.65 was found to separate the nonmodelable and modelable data sets.
我们提出了一个简单的可模性指数(MODI),用于估计获得生物活性化合物二元数据集的预测性定量构效关系(QSAR)模型(正确分类率高于 0.7)的可行性。MODI 定义为活性类别加权的化合物的最近邻对的数量与具有相同活性类别的化合物的总数的比值。MODI 值已针对 100 多个数据集进行了计算,发现阈值为 0.65 可用于区分不可建模和可建模数据集。