Suppr超能文献

动态儿科模型:床边基于模型的决策支持的要求。

Paediatric models in motion: requirements for model-based decision support at the bedside.

作者信息

Barrett Jeffrey S

机构信息

Department of Pediatrics, Division of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.

出版信息

Br J Clin Pharmacol. 2015 Jan;79(1):85-96. doi: 10.1111/bcp.12287.

Abstract

Optimal paediatric pharmacotherapy is reliant on a detailed understanding of the individual patient including their developmental status and disease state as well as the pharmaceutical agents he/she is receiving for treatment or management of side effects. Our appreciation for size and maturation effects on the pharmacokinetic/pharmacodynamic (PK/PD) phenomenon has improved to the point that we can develop predictive models that permit us to individualize therapy, especially in the situation where we are monitoring drug effects or therapeutic concentrations. The growth of efforts to guide paediatric pharmacotherapy via model-based decision support necessitates a coordinated and systematic approach to ensuring reliable and robust output to caregivers that represents the current standard of care and adheres to governance imposed by the host institution or coalition responsible. Model-based systems which guide caregivers on dosing paediatric patients in a more comprehensive manner are in development at several institutions. Care must be taken that these systems provide robust guidance with the current best practice. These systems must evolve as new information becomes available and ultimately are best constructed from diverse data representing global input on demographics, ethnic / racial diversity, diet and other lifestyle factors. Multidisciplinary involvement at the project team level is key to the ultimate clinical valuation. Likewise, early engagement of clinical champions is also critical for the success of model-based tools. Adherence to regulatory requirements as well as best practices with respect to software development and testing are essential if these tools are to be used as part of the routine standard of care.

摘要

最佳儿科药物治疗依赖于对个体患者的详细了解,包括其发育状况和疾病状态,以及其正在接受治疗或用于管理副作用的药物制剂。我们对大小和成熟度对药代动力学/药效学(PK/PD)现象的影响的认识已经提高到这样的程度,即我们可以开发预测模型,使我们能够实现个体化治疗,特别是在我们监测药物效果或治疗浓度的情况下。通过基于模型的决策支持来指导儿科药物治疗的努力不断增加,这就需要一种协调一致的系统方法,以确保向护理人员提供可靠且强大的输出,该输出代表当前的护理标准并遵守主办机构或负责联盟所施加的管理规定。几家机构正在开发以更全面的方式指导护理人员对儿科患者进行给药的基于模型的系统。必须注意的是,这些系统要依据当前的最佳实践提供有力的指导。随着新信息的出现,这些系统必须不断发展,最终最好由代表全球人口统计学、种族/民族多样性、饮食和其他生活方式因素的各种数据构建而成。项目团队层面的多学科参与是最终临床评估的关键。同样,临床倡导者的早期参与对于基于模型的工具的成功也至关重要。如果要将这些工具用作常规护理标准的一部分,遵守监管要求以及软件开发和测试方面的最佳实践是必不可少的。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Sepsis Care Pathway 2019.2019年脓毒症护理路径
Qatar Med J. 2019 Nov 7;2019(2):4. doi: 10.5339/qmj.2019.qccc.4. eCollection 2019.
6
Status Toward the Implementation of Precision Dosing in Children.儿童精准用药实施现状。
J Clin Pharmacol. 2021 Jun;61 Suppl 1:S36-S51. doi: 10.1002/jcph.1830.
7
Critical Care Network in the State of Qatar.卡塔尔国重症监护网络。
Qatar Med J. 2019 Nov 7;2019(2):2. doi: 10.5339/qmj.2019.qccc.2. eCollection 2019.

引用本文的文献

1
Artificial Intelligence Opportunities to Guide Precision Dosing Strategies.人工智能助力精准给药策略的机遇。
J Pediatr Pharmacol Ther. 2024 Aug;29(4):434-440. doi: 10.5863/1551-6776-29.4.434. Epub 2024 Aug 13.
6
Pharmacokinetic studies in children: recommendations for practice and research.儿童药代动力学研究:实践和研究建议。
Arch Dis Child. 2018 Jul;103(7):695-702. doi: 10.1136/archdischild-2017-314506. Epub 2018 Apr 19.

本文引用的文献

1
Validation of an improved pediatric weight estimation strategy.一种改进的儿科体重估计策略的验证
J Pediatr Pharmacol Ther. 2013 Apr;18(2):112-21. doi: 10.5863/1551-6776-18.2.112.
5
Warfarin dose prediction in children using pharmacogenetics information.利用药物遗传学信息预测儿童华法林剂量
Br J Haematol. 2012 Oct;159(1):106-9. doi: 10.1111/j.1365-2141.2012.09230.x. Epub 2012 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验