Suppr超能文献

基于机器学习的利什曼原虫丙酮酸激酶抑制剂的化学信息学模型。

Cheminformatic models based on machine learning for pyruvate kinase inhibitors of Leishmania mexicana.

机构信息

GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.

出版信息

BMC Bioinformatics. 2013 Nov 19;14:329. doi: 10.1186/1471-2105-14-329.

Abstract

BACKGROUND

Leishmaniasis is a neglected tropical disease which affects approx. 12 million individuals worldwide and caused by parasite Leishmania. The current drugs used in the treatment of Leishmaniasis are highly toxic and has seen widespread emergence of drug resistant strains which necessitates the need for the development of new therapeutic options. The high throughput screen data available has made it possible to generate computational predictive models which have the ability to assess the active scaffolds in a chemical library followed by its ADME/toxicity properties in the biological trials.

RESULTS

In the present study, we have used publicly available, high-throughput screen datasets of chemical moieties which have been adjudged to target the pyruvate kinase enzyme of L. mexicana (LmPK). The machine learning approach was used to create computational models capable of predicting the biological activity of novel antileishmanial compounds. Further, we evaluated the molecules using the substructure based approach to identify the common substructures contributing to their activity.

CONCLUSION

We generated computational models based on machine learning methods and evaluated the performance of these models based on various statistical figures of merit. Random forest based approach was determined to be the most sensitive, better accuracy as well as ROC. We further added a substructure based approach to analyze the molecules to identify potentially enriched substructures in the active dataset. We believe that the models developed in the present study would lead to reduction in cost and length of clinical studies and hence newer drugs would appear faster in the market providing better healthcare options to the patients.

摘要

背景

利什曼病是一种被忽视的热带病,影响着全球约 1200 万人,由寄生虫利什曼原虫引起。目前用于治疗利什曼病的药物毒性很高,而且已经出现了广泛的耐药菌株,这就需要开发新的治疗方法。高通量筛选数据的出现使得生成计算预测模型成为可能,这些模型能够评估化学文库中的活性支架,以及随后在生物试验中的 ADME/毒性特性。

结果

在本研究中,我们使用了公开的、针对 L. mexicana(LmPK)丙酮酸激酶的高通量筛选数据集的化学片段。我们使用机器学习方法来创建能够预测新型抗利什曼化合物生物活性的计算模型。此外,我们还使用基于子结构的方法来评估这些分子,以确定对其活性有贡献的常见子结构。

结论

我们基于机器学习方法生成了计算模型,并根据各种统计指标评估了这些模型的性能。基于随机森林的方法被确定为最敏感、准确性更高和 ROC 更好。我们进一步添加了基于子结构的方法来分析分子,以识别活性数据集中可能富集的子结构。我们相信,本研究中开发的模型将有助于降低临床研究的成本和周期,因此新的药物将更快地进入市场,为患者提供更好的医疗保健选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验