Ochoa Rodrigo, Watowich Stanley J, Flórez Andrés, Mesa Carol V, Robledo Sara M, Muskus Carlos
Programa de Estudio y Control de Enfermedades Tropicales -PECET, Universidad de Antioquia, Calle 62 # 52-59, Torre 2, Lab. 632, Medellín, Colombia.
Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
J Comput Aided Mol Des. 2016 Jul;30(7):541-52. doi: 10.1007/s10822-016-9921-4. Epub 2016 Jul 20.
The trypanosomatid protozoa Leishmania is endemic in ~100 countries, with infections causing ~2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen ~2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.
锥虫类原生动物利什曼原虫在约100个国家呈地方性流行,每年因感染导致约200万例新的利什曼病病例。疾病症状可包括严重的皮肤和黏膜溃疡、发热、贫血、脾肿大以及死亡。不幸的是,已获批用于治疗利什曼病的疗法存在潜在的严重副作用,包括死亡。此外,大多数流行国家都出现了对药物耐药的利什曼原虫寄生虫。为满足对新型、安全且廉价的抗利什曼病药物的迫切需求,我们利用IBM世界社区网格,使用独特的利什曼原虫蛋白质和一个包含60万个类药物小分子的数据库,完成了基于计算机的药物发现筛选(利什曼病药物搜索)。选择了来自不同利什曼原虫物种的蛋白质结构进行分子动力学(MD)模拟,并从每个MD轨迹中选取一系列构象“快照”以模拟蛋白质的灵活性。使用松弛复合物方案方法针对小分子数据库筛选约2000个MD构象,生成超过10亿个蛋白质 - 配体结构。对于每个蛋白质靶点,计算结合谱以识别预测与所有蛋白质构象具有最高平均亲和力的化合物。值得注意的是,预测有四种不同的利什曼原虫蛋白质靶点会与小分子强烈结合,其中二氢乳清酸脱氢酶(LmDHODH;PDB:3MJY)预测会发生最强的结合相互作用。对一些预测的紧密结合LmDHODH抑制剂进行了体外测试,并鉴定出了巴拿马利什曼原虫的强效选择性抑制剂。这些有前景的小分子适用于通过基于结构的迭代优化以及体外/体内验证试验进行进一步开发。