Abou-Jaoudé Wassim, Chaves Madalena, Gouzé Jean-Luc
Institut de Biologie de l'Ecole Normale Supérieure, 46 rue d'Ulm, 75230 , Paris Cedex 05, France,
J Math Biol. 2014 Dec;69(6-7):1461-95. doi: 10.1007/s00285-013-0735-x. Epub 2013 Nov 20.
A class of piecewise affine differential (PWA) models, initially proposed by Glass and Kauffman (in J Theor Biol 39:103-129, 1973), has been widely used for the modelling and the analysis of biological switch-like systems, such as genetic or neural networks. Its mathematical tractability facilitates the qualitative analysis of dynamical behaviors, in particular periodic phenomena which are of prime importance in biology. Notably, a discrete qualitative description of the dynamics, called the transition graph, can be directly associated to this class of PWA systems. Here we present a study of periodic behaviours (i.e. limit cycles) in a class of two-dimensional piecewise affine biological models. Using concavity and continuity properties of Poincaré maps, we derive structural principles linking the topology of the transition graph to the existence, number and stability of limit cycles. These results notably extend previous works on the investigation of structural principles to the case of unequal and regulated decay rates for the 2-dimensional case. Some numerical examples corresponding to minimal models of biological oscillators are treated to illustrate the use of these structural principles.
一类分段仿射微分(PWA)模型最初由格拉斯和考夫曼提出(发表于《理论生物学杂志》第39卷:103 - 129页,1973年),已被广泛用于对诸如遗传或神经网络等生物开关类系统进行建模和分析。其数学上的易处理性便于对动力学行为进行定性分析,特别是对生物学中至关重要的周期现象进行分析。值得注意的是,一种称为转移图的动力学离散定性描述可以直接与这类PWA系统相关联。在此,我们对一类二维分段仿射生物模型中的周期行为(即极限环)进行研究。利用庞加莱映射的凹性和连续性性质,我们推导出了将转移图的拓扑结构与极限环的存在性、数量和稳定性联系起来的结构原理。这些结果显著地将先前关于结构原理研究的工作扩展到了二维情况下衰减率不相等且受调控的情形。处理了一些对应于生物振荡器最小模型的数值例子,以说明这些结构原理的应用。