Abou-Jaoudé Wassim, Ouattara Djomangan A, Kaufman Marcelle
Université Libre de Bruxelles (U.L.B.), Faculté des Sciences, Unit of Theoretical and Computational Biology, Campus Plaine C.P. 231, B-1050 Brussels, Belgium.
J Theor Biol. 2009 Jun 21;258(4):561-77. doi: 10.1016/j.jtbi.2009.02.005. Epub 2009 Feb 21.
We investigate the dynamical properties of a simple four-variable model describing the interactions between the tumour suppressor protein p53, its main negative regulator Mdm2 and DNA damage, a model inspired by the work of Ciliberto et al. [2005. Steady states and oscillations in the p53/Mdm2 network. Cell Cycle 4(3), 488-493]. Its core consists of an antagonist circuit between p53 and nuclear Mdm2 embedded in a three-element negative circuit involving p53, cytoplasmic and nuclear Mdm2. A major concern has been to develop an integrated approach in which various types of descriptions complement each other. Here we present the logical analysis of our network and briefly discuss the corresponding differential model. Introducing the new notion of "logical bifurcation diagrams", we show that the essential qualitative dynamical properties of our network can be summarized by a small number of bifurcation scenarios, which can be understood in terms of the balance between the positive and negative circuits of the core network. The model displays a wide variety of behaviours depending on the level of damage, the efficiency of damage repair and, importantly, the DNA-binding affinity and transcriptional activity of p53, which are both stress- and cell-type specific. Our results qualitatively account for several experimental observations such as p53 pulses after irradiation, failure to respond to irradiation, shifts in the frequency of the oscillations, or rapid dampening of the oscillations in a cell population. They also suggest a great variability of behaviour from cell to cell and between different cell-types on the basis of different post-translational modifications and transactivation properties of p53. Finally, our differential analysis provides an interpretation of the high and low frequency oscillations observed by Geva-Zatorsky et al. [2006. Oscillations and variability in the p53 system. Mol. Syst. Biol. 2, 2006.0033] depending on the irradiation dose. A more detailed analysis of our differential model as well as its stochastic analysis will be developed in a next paper.
我们研究了一个简单的四变量模型的动力学特性,该模型描述了肿瘤抑制蛋白p53、其主要负调节因子Mdm2与DNA损伤之间的相互作用,该模型受Ciliberto等人[2005年。p53/Mdm2网络中的稳态和振荡。《细胞周期》4(3),488 - 493]工作的启发。其核心由p53与核Mdm2之间的拮抗回路组成,该回路嵌入了一个涉及p53、细胞质和核Mdm2的三元件负回路。一个主要关注点是开发一种综合方法,其中各种类型的描述相互补充。在此,我们展示了对我们网络的逻辑分析,并简要讨论了相应的微分模型。引入“逻辑分岔图”这一新概念,我们表明我们网络的基本定性动力学特性可以由少数分岔情况总结,这些情况可以根据核心网络正负回路之间的平衡来理解。该模型根据损伤水平、损伤修复效率,重要的是根据p53的DNA结合亲和力和转录活性表现出多种行为,而p53的这些特性都是应激和细胞类型特异性的。我们的结果定性地解释了几个实验观察结果,例如照射后的p53脉冲、对照射无反应、振荡频率的变化或细胞群体中振荡的快速衰减。它们还表明,基于p53不同的翻译后修饰和反式激活特性,细胞之间以及不同细胞类型之间的行为存在很大差异。最后,我们的微分分析对Geva - Zatorsky等人[2006年。p53系统中的振荡和变异性。《分子系统生物学》2,2006.0033]根据照射剂量观察到的高频和低频振荡提供了解释。我们将在下一篇论文中对我们的微分模型进行更详细的分析以及其随机分析。