Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 3G9.
Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4698-707. doi: 10.1073/pnas.1311120110. Epub 2013 Nov 19.
Access to robust and information-rich human cardiac tissue models would accelerate drug-based strategies for treating heart disease. Despite significant effort, the generation of high-fidelity adult-like human cardiac tissue analogs remains challenging. We used computational modeling of tissue contraction and assembly mechanics in conjunction with microfabricated constraints to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues that we term cardiac microwires (CMWs). Miniaturization of the platform circumvented the need for tissue vascularization and enabled higher-throughput image-based analysis of CMW drug responsiveness. CMW tissue properties could be tuned using electromechanical stimuli and cell composition. Specifically, controlling self-assembly of 3D tissues in aligned collagen, and pacing with point stimulation electrodes, were found to promote cardiac maturation-associated gene expression and in vivo-like electrical signal propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeobox 5 (NKX2-5)+ cardiomyocytes and 25% Cluster of Differentiation 90 OR (CD90)+ nonmyocytes optimized tissue remodeling dynamics and yielded enhanced structural and functional properties. Finally, we demonstrate the utility of the optimized platform in a tachycardic model of arrhythmogenesis, an aspect of cardiac electrophysiology not previously recapitulated in 3D in vitro hPSC-derived cardiac microtissue models. The design criteria identified with our CMW platform should accelerate the development of predictive in vitro assays of human heart tissue function.
获得稳健且信息丰富的人类心脏组织模型将加速基于药物的心脏病治疗策略。尽管付出了巨大努力,但生成高保真的成人样人类心脏组织类似物仍然具有挑战性。我们使用组织收缩和组装力学的计算建模,结合微制造约束条件,指导设计对齐和功能的 3D 人类多能干细胞(hPSC)衍生的心脏微组织,我们称之为心脏微丝(CMW)。该平台的小型化避免了组织血管化的需要,并实现了基于图像的 CMW 药物反应性的高通量分析。可以使用机电刺激和细胞组成来调整 CMW 组织性能。具体来说,发现控制 3D 组织在对齐的胶原蛋白中的自组装,并使用起搏点刺激电极起搏,可促进与心脏成熟相关的基因表达和类似于体内的电信号传播。此外,筛选一系列 hPSC 衍生的心脏细胞比例发现,75% NKX2 Homeobox 5(NKX2-5)+心肌细胞和 25% Cluster of Differentiation 90 OR(CD90)+非心肌细胞优化了组织重塑动力学,并产生了增强的结构和功能特性。最后,我们在心动过速心律失常发生的心动过速模型中证明了优化平台的实用性,这是以前在 3D 体外 hPSC 衍生的心脏微组织模型中尚未再现的心脏电生理学方面。我们的 CMW 平台确定的设计标准应加速人类心脏组织功能的预测性体外检测方法的开发。