Suppr超能文献

基质结构与力学调控工程化心肌微组织中的肌原纤维组织、肋状肌附着点组装及收缩性。

Matrix Architecture and Mechanics Regulate Myofibril Organization, Costamere Assembly, and Contractility in Engineered Myocardial Microtissues.

作者信息

DePalma Samuel J, Jilberto Javiera, Stis Austin E, Huang Darcy D, Lo Jason, Davidson Christopher D, Chowdhury Aamilah, Kent Robert N, Jewett Maggie E, Kobeissi Hiba, Chen Christopher S, Lejeune Emma, Helms Adam S, Nordsletten David A, Baker Brendon M

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA.

出版信息

Adv Sci (Weinh). 2024 Dec;11(47):e2309740. doi: 10.1002/advs.202309740. Epub 2024 Nov 18.

Abstract

The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, they established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices, and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. They found that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly, myofibril maturation, and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can elucidate mechanisms of tissue maturation and disease.

摘要

心肌的机械功能由心肌细胞的收缩性和细胞外基质(ECM)的生物力学所定义。由于现有工程化心肌组织方法存在局限性,理解这种关系仍然是一项重要的未解决挑战。在此,他们通过整合模拟ECM的合成纤维基质和诱导多能干细胞衍生的心肌细胞(iPSC-CMs),建立了具有可调力学和结构的心脏微组织阵列,实现了实时收缩性读数、深入的结构评估以及组织特异性计算建模。他们发现基质纤维的刚度和排列明显影响纯iPSC-CM组织的结构发育和收缩功能。通过计算模型和定量免疫荧光对纤维基质刚度影响的进一步研究表明,细胞-ECM相互作用参与肌原纤维组装、肌原纤维成熟,尤其是与组织收缩功能改善相关的粘着斑组装。这些结果突出了具有可控结构和力学的iPSC-CM组织模型如何能够阐明组织成熟和疾病的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/385d/11653763/610ba4968ac2/ADVS-11-2309740-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验