Department of Biophysics, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
BMC Bioinformatics. 2013 Nov 20;14:333. doi: 10.1186/1471-2105-14-333.
Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization.
We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy.
We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.
多光谱图像的无监督分割在注释红外显微镜图像中起着重要作用,是无标记光谱组织病理学的必要步骤。在这种情况下,已经使用和评估了各种聚类方法,以实现与组织病理学特征一致的傅里叶变换红外(FT-IR)显微镜图像的分割。
我们提出了所谓的交互式相似性图作为注释红外显微镜图像的替代注释策略。我们证明,从交互式相似性图获得的分割导致与从通常使用的层次聚类方法获得的分割一样准确的分割。为了在定量基础上进行这种比较,我们提供了一种方案,该方案允许识别树状图中的非水平切割。这为红外显微镜中常用的层次聚类方法提供了验证方案。
我们证明,交互式相似性图可以识别比基于层次聚类的方法更准确的分割,因此是一种可行的、由于其交互性质而具有吸引力的层次聚类替代方法。我们的验证方案还表明,层次二均值的性能与传统使用的 Ward 聚类相当。由于前者在时间和内存方面效率更高,因此我们的结果表明,对于注释大型光谱图像,另一种资源要求较低的替代方法。