Nagafuchi Kousuke, Kawata Hidemichi, Nashiki Kazutaka, Ohkura Sunao, Hayashida Kazuya, Kawahara Tomomi, Ohishi Ayumu, Mizoguchi Asumi, Saida Yoshifumi
Imaging Center, Kurume University Medical Center.
Nihon Hoshasen Gijutsu Gakkai Zasshi. 2013 Nov;69(11):1266-73. doi: 10.6009/jjrt.2013_jsrt_69.11.1266.
Stereotactic radiosurgery (SRS) and radiotherapy (SRT) are intricate techniques that deliver a highly precise radiation dose to a localized target, usually a tumor. At our hospital, we perform SRS and SRT on brain tumors using a linear accelerator (linac) mounted with an external micro multi-leaf system. The Task Group TG-142 Report by the American Association of Physicists in Medicine recommends the coincidence of the radiation and mechanical isocenter to be within ±1 mm. The Winston-Lutz test is commonly used to verify the linac isocenter position: it has the advantages of being a simple method that uses a film or electronic portal imaging device (EPID). However, the film method requires a higher radiation dose, which makes it more time-consuming than the EPID method, and the results are highly dependent on the skills of the observer. The EPID method has certain advantages over the film method, but it has low resolution and can only be used for a few combinations of gantry and couch angles. This prompted us to develop an in-house-designed radiation receptor system based on digital radiography, using a photostimulable storage phosphor and automated analysis algorithm for Winston-Lutz test images using a template-matching technique based on cross-correlation coefficients. Our proposed method shows a maximum average absolute error of 0.222 mm (less than 2 pixels) for 0.5 mm and 1.0 mm displacement from the isocenter toward the inline and crossline directions. Our proposed method is thus potentially useful for verifying the Linac isocenter position with a small error and good reproducibility, as demonstrated by improved accuracy of evaluation.
立体定向放射外科手术(SRS)和立体定向放射治疗(SRT)是复杂的技术,可向局部目标(通常是肿瘤)提供高度精确的辐射剂量。在我们医院,我们使用安装有外部微型多叶系统的直线加速器(直线加速器)对脑肿瘤进行SRS和SRT。美国医学物理学家协会的任务组TG-142报告建议辐射等中心与机械等中心的重合度在±1毫米以内。温斯顿-卢茨测试通常用于验证直线加速器等中心的位置:它具有使用胶片或电子门静脉成像设备(EPID)的简单方法的优点。然而,胶片法需要更高的辐射剂量,这使得它比EPID法更耗时,并且结果高度依赖于观察者的技能。EPID法相对于胶片法有一定优势,但分辨率低,只能用于少数几种机架和治疗床角度的组合。这促使我们开发一种基于数字射线照相的内部设计的辐射受体系统,该系统使用光激励存储磷光体和基于互相关系数的模板匹配技术的自动分析算法来处理温斯顿-卢茨测试图像。我们提出的方法对于从等中心向直线和交叉线方向偏移0.5毫米和1.0毫米时,最大平均绝对误差为0.222毫米(小于2像素)。因此,我们提出的方法对于以小误差和良好的可重复性验证直线加速器等中心位置可能是有用的,评估准确性的提高证明了这一点。