Cohen Ouri, Tal Assaf, Gonen Oded
Department of Radiology, New York University, New York, New York, USA; Biomedical Engineering, Columbia University, New York, New York, USA.
Magn Reson Med. 2014 Oct;72(4):923-33. doi: 10.1002/mrm.25022. Epub 2013 Nov 20.
To reduce the specific-absorption-rate (SAR) and chemical shift displacement (CSD) of three-dimensional (3D) Hadamard spectroscopic imaging (HSI) and maintain its point spread function (PSF) benefits.
A 3D hybrid of 2D longitudinal, 1D transverse HSI (L-HSI, T-HSI) sequence is introduced and demonstrated in a phantom and the human brain at 3 Tesla (T). Instead of superimposing each of the selective Hadamard radiofrequency (RF) pulses with its N single-slice components, they are cascaded in time, allowing N-fold stronger gradients, reducing the CSD. A spatially refocusing 180° RF pulse following the T-HSI encoding block provides variable, arbitrary echo time (TE) to eliminate undesirable short T2 species' signals, e.g., lipids.
The sequence yields 10-15% better signal-to-noise ratio (SNR) and 8-16% less signal bleed than 3D chemical shift imaging of equal repetition time, spatial resolution and grid size. The 13 ± 6, 22 ± 7, 24 ± 8, and 31 ± 14 in vivo SNRs for myo-inositol, choline, creatine, and N-acetylaspartate were obtained in 21 min from 1 cm(3) voxels at TE ≈ 20 ms. Maximum CSD was 0.3 mm/ppm in each direction.
The new hybrid HSI sequence offers a better localized PSF at reduced CSD and SAR at 3T. The short and variable TE permits acquisition of short T2 and J-coupled metabolites with higher SNR.
降低三维(3D)哈达玛光谱成像(HSI)的比吸收率(SAR)和化学位移偏移(CSD),并保持其点扩散函数(PSF)优势。
引入一种二维纵向、一维横向HSI(L-HSI、T-HSI)序列的3D混合序列,并在体模和3特斯拉(T)的人脑模型中进行了演示。不是将每个选择性哈达玛射频(RF)脉冲与其N个单层分量叠加,而是在时间上进行级联,允许N倍更强的梯度,从而降低CSD。在T-HSI编码块之后的空间重聚焦180°RF脉冲提供可变的、任意的回波时间(TE),以消除不需要的短T2物质(如脂质)的信号。
与具有相同重复时间、空间分辨率和网格大小的3D化学位移成像相比,该序列的信噪比(SNR)提高了10-15%,信号泄漏减少了8-16%。在TE≈20 ms时,从1 cm³体素中在21分钟内获得了肌醇、胆碱、肌酸和N-乙酰天门冬氨酸的体内SNR分别为13±6、22±7、24±8和31±14。每个方向上的最大CSD为0.3 mm/ppm。
新的混合HSI序列在3T时以降低的CSD和SAR提供了更好的局部PSF。短且可变的TE允许以更高的SNR采集短T2和J耦合代谢物。