Department of Neurobiology and Anatomy, Department of Biology, and Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.
J Neurosci. 2013 Nov 20;33(47):18409-24. doi: 10.1523/JNEUROSCI.2529-13.2013.
Auditory neuropathy is a form of hearing loss in which cochlear inner hair cells fail to correctly encode or transmit acoustic information to the brain. Few genes have been implicated in the adult-onset form of this disease. Here we show that mice lacking the transcription factor Foxo3 have adult onset hearing loss with the hallmark characteristics of auditory neuropathy, namely, elevated auditory thresholds combined with normal outer hair cell function. Using histological techniques, we demonstrate that Foxo3-dependent hearing loss is not due to a loss of cochlear hair cells or spiral ganglion neurons, both of which normally express Foxo3. Moreover, Foxo3-knock-out (KO) inner hair cells do not display reductions in numbers of synapses. Instead, we find that there are subtle structural changes in and surrounding inner hair cells. Confocal microscopy in conjunction with 3D modeling and quantitative analysis show that synaptic localization is altered in Foxo3-KO mice and Myo7a immunoreactivity is reduced. TEM demonstrates apparent afferent degeneration. Strikingly, acoustic stimulation promotes Foxo3 nuclear localization in vivo, implying a connection between cochlear activity and synaptic function maintenance. Together, these findings support a new role for the canonical damage response factor Foxo3 in contributing to the maintenance of auditory synaptic transmission.
听觉神经病是一种听力损失形式,其中耳蜗内毛细胞不能正确编码或向大脑传输声信息。少数基因与这种疾病的成人发病形式有关。在这里,我们表明,缺乏转录因子 Foxo3 的小鼠会出现成人听力损失,其特征与听觉神经病一致,即听觉阈值升高,同时外毛细胞功能正常。使用组织学技术,我们证明 Foxo3 依赖性听力损失不是由于耳蜗毛细胞或螺旋神经节神经元的丧失引起的,这两种细胞通常都表达 Foxo3。此外,Foxo3 敲除(KO)内毛细胞中突触数量没有减少。相反,我们发现内毛细胞及其周围有细微的结构变化。共聚焦显微镜结合 3D 建模和定量分析表明,Foxo3-KO 小鼠的突触定位发生改变,Myo7a 免疫反应性降低。TEM 显示明显的传入神经变性。引人注目的是,声刺激促进了体内 Foxo3 的核定位,暗示了耳蜗活动与突触功能维持之间的联系。这些发现共同支持了经典损伤反应因子 Foxo3 在维持听觉突触传递中的新作用。