Suppr超能文献

代谢型腺苷酸和谷氨酸受体的功能合作调节小脑的突触后可塑性。

Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum.

机构信息

Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan, Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan, and Laboratory for Neural Information Technology, Graduate School of Sciences and Engineering, The University of Toyama, Toyama 930-8555, Japan.

出版信息

J Neurosci. 2013 Nov 20;33(47):18661-71. doi: 10.1523/JNEUROSCI.5567-12.2013.

Abstract

G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R), which regulates neurotransmitter release and neuronal excitability in central neurons, and type-1 metabotropic glutamate receptor (mGluR1), which mediates cerebellar long-term depression, a form of synaptic plasticity crucial for cerebellar motor learning. We examined interaction between these GPCRs by immunocytochemical, biochemical, and Förster resonance energy transfer analyses in cultured mouse Purkinje cells and heterologous expression cells. These analyses revealed that the GPCRs closely colocalized and formed heteromeric complexes on the cell surfaces. Furthermore, our electrophysiological analysis showed that CSF levels (40-400 nm) of adenosine or synthetic A1R agonists with comparable potencies blocked mGluR1-mediated long-term depression of the postsynaptic glutamate-responsiveness (glu-LTD) of cultured Purkinje cells. A similar dose of the A1R agonist decreased the ligand affinity of mGluR1 and did not affect depolarization-induced Ca(2+) influx, which is an essential factor in inducing glu-LTD. The A1R agonist did not affect glu-LTD mimicked by direct activation of protein kinase C. These results suggest that A1R blocked glu-LTD by decreasing the ligand sensitivity of mGluR1, but not the coupling efficacy from mGluR1 to the intracellular signaling cascades. These findings provide a new insight into neuronal GPCR signaling and demonstrate a novel regulatory mechanism of synaptic plasticity.

摘要

G 蛋白偶联受体 (GPCR) 可能形成异源二聚体复合物,并协同介导细胞反应。尽管已经提出许多神经元中存在异源 GPCR 复合物,但它们对神经元功能的贡献仍不清楚。我们使用两种在小脑浦肯野细胞中表达的 GPCR 来解决这个问题:腺苷 A1 受体 (A1R),它调节中枢神经元中的神经递质释放和神经元兴奋性,以及 1 型代谢型谷氨酸受体 (mGluR1),它介导小脑长时程抑制,这是小脑运动学习中至关重要的一种突触可塑性形式。我们通过免疫细胞化学、生化和Förster 共振能量转移分析在培养的小鼠浦肯野细胞和异源表达细胞中研究了这些 GPCR 之间的相互作用。这些分析表明,GPCR 紧密共定位并在细胞表面形成异源二聚体复合物。此外,我们的电生理分析表明,CSF 水平(40-400nm)的腺苷或具有相当效力的合成 A1R 激动剂阻断了培养的浦肯野细胞中 mGluR1 介导的突触后谷氨酸反应性的长时程抑制(glu-LTD)。类似剂量的 A1R 激动剂降低了 mGluR1 的配体亲和力,并且不影响去极化诱导的 Ca(2+)内流,这是诱导 glu-LTD 的必要因素。A1R 激动剂不影响通过直接激活蛋白激酶 C 模拟的 glu-LTD。这些结果表明,A1R 通过降低 mGluR1 的配体敏感性而不是降低 mGluR1 到细胞内信号级联的偶联效率来阻断 glu-LTD。这些发现为神经元 GPCR 信号提供了新的见解,并证明了突触可塑性的新调节机制。

相似文献

引用本文的文献

本文引用的文献

2
Membrane protein structural bioinformatics.膜蛋白结构生物信息学。
J Struct Biol. 2012 Sep;179(3):327-37. doi: 10.1016/j.jsb.2011.10.008. Epub 2011 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验