Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, United States of America.
Genet Epidemiol. 2014 Jan;38(1):31-41. doi: 10.1002/gepi.21773. Epub 2013 Nov 23.
Two important contributors to missing heritability are believed to be rare variants and gene-environment interaction (GXE). Thus, detecting GXE where G is a rare haplotype variant (rHTV) is a pressing problem. Haplotype analysis is usually the natural second step to follow up on a genomic region that is implicated to be associated through single nucleotide variants (SNV) analysis. Further, rHTV can tag associated rare SNV and provide greater power to detect them than popular collapsing methods. Recently we proposed Logistic Bayesian LASSO (LBL) for detecting rHTV association with case-control data. LBL shrinks the unassociated (especially common) haplotypes toward zero so that an associated rHTV can be identified with greater power. Here, we incorporate environmental factors and their interactions with haplotypes in LBL. As LBL is based on retrospective likelihood, this extension is not trivial. We model the joint distribution of haplotypes and covariates given the case-control status. We apply the approach (LBL-GXE) to the Michigan, Mayo, AREDS, Pennsylvania Cohort Study on Age-related Macular Degeneration (AMD). LBL-GXE detects interaction of a specific rHTV in CFH gene with smoking. To the best of our knowledge, this is the first time in the AMD literature that an interaction of smoking with a specific (rather than pooled) rHTV has been implicated. We also carry out simulations and find that LBL-GXE has reasonably good powers for detecting interactions with rHTV while keeping the type I error rates well controlled. Thus, we conclude that LBL-GXE is a useful tool for uncovering missing heritability.
有两个重要因素被认为导致了遗传率的缺失,分别是罕见变异和基因-环境交互作用(GXE)。因此,检测 G 是罕见单倍型变异(rHTV)时的 GXE 是一个紧迫的问题。单倍型分析通常是跟进通过单核苷酸变异(SNV)分析表明与相关的基因组区域的自然第二步。此外,rHTV 可以标记相关的罕见 SNV,并比流行的合并方法提供更大的检测能力。最近,我们提出了用于检测病例对照数据中 rHTV 关联的逻辑贝叶斯 LASSO(LBL)。LBL 将不相关(特别是常见)单倍型收缩到零,从而可以更有效地识别相关的 rHTV。在这里,我们将环境因素及其与单倍型的相互作用纳入 LBL 中。由于 LBL 是基于回顾性似然的,因此这种扩展并非微不足道。我们对给定病例对照状态的单倍型和协变量的联合分布进行建模。我们将该方法(LBL-GXE)应用于密歇根州、梅奥、AREDS、宾夕法尼亚州年龄相关性黄斑变性(AMD)队列研究。LBL-GXE 检测到 CFH 基因中特定 rHTV 与吸烟之间的相互作用。据我们所知,这是 AMD 文献中首次暗示吸烟与特定(而不是合并)rHTV 之间的相互作用。我们还进行了模拟,发现 LBL-GXE 在保持 I 型错误率得到很好控制的同时,具有合理的检测 rHTV 相互作用的功效。因此,我们得出结论,LBL-GXE 是揭示遗传缺失的有用工具。