Suppr超能文献

检测二项和连续两种相关表型的稀有单倍型关联。

Detecting rare haplotype association with two correlated phenotypes of binary and continuous types.

机构信息

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA.

出版信息

Stat Med. 2021 Apr 15;40(8):1877-1900. doi: 10.1002/sim.8877. Epub 2021 Jan 12.

Abstract

Multiple correlated traits/phenotypes are often collected in genetic association studies and they may share a common genetic mechanism. Joint analysis of correlated phenotypes has well-known advantages over one-at-a-time analysis including gain in power and better understanding of genetic etiology. However, when the phenotypes are of discordant types such as binary and continuous, the joint modeling is more challenging. Another research area of current interest is discovery of rare genetic variants. Currently there is no method available for detecting association of rare (or common) haplotypes with multiple discordant phenotypes jointly. Our goal is to fill this gap specifically for two discordant phenotypes. We consider a rare haplotype association method for a binary phenotype, logistic Bayesian LASSO (univariate LBL) and its extension for two correlated binary phenotypes (bivariate LBL-2B). Under this framework, we propose a haplotype association test with binary and continuous phenotypes jointly (bivariate LBL-BC). Specifically, we use a latent variable to induce correlation between the two phenotypes. We carry out extensive simulations to investigate bivariate LBL-BC and compare it with univariate LBL and bivariate LBL-2B. In most settings, bivariate LBL-BC performs the best. In only two situations, bivariate LBL-BC has similar performance-when the two phenotypes are (1) weakly or not correlated and the target haplotype affects the binary phenotype only and (2) strongly positively correlated and the target haplotype affects both phenotypes in positive direction. Finally, we apply the method to a data set on lung cancer and nicotine dependence and detect several haplotypes including a rare one.

摘要

多相关性状/表型通常在遗传关联研究中收集,它们可能具有共同的遗传机制。相关表型的联合分析相对于一次分析具有明显的优势,包括提高功效和更好地理解遗传病因。然而,当表型为不同类型(如二分类和连续型)时,联合建模更具挑战性。当前感兴趣的另一个研究领域是发现罕见的遗传变异。目前,尚无方法可用于检测罕见(或常见)单倍型与多个不相关表型的关联。我们的目标是专门针对两种不相关的表型来填补这一空白。我们考虑了一种用于二分类表型的罕见单倍型关联方法,即逻辑贝叶斯 LASSO(单变量 LBL)及其用于两个相关二分类表型的扩展(双变量 LBL-2B)。在此框架下,我们提出了一种用于联合二分类和连续表型的单倍型关联检验方法(双变量 LBL-BC)。具体来说,我们使用一个潜在变量来诱导两个表型之间的相关性。我们进行了广泛的模拟研究,以调查双变量 LBL-BC 并将其与单变量 LBL 和双变量 LBL-2B 进行比较。在大多数情况下,双变量 LBL-BC 的表现最好。仅在两种情况下,双变量 LBL-BC 的性能相似——当两个表型(1)弱相关或不相关且目标单倍型仅影响二分类表型,和(2)强正相关且目标单倍型以正方向影响两个表型时。最后,我们将该方法应用于肺癌和尼古丁依赖的数据集,并检测到包括一个罕见单倍型在内的多个单倍型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验