Suppr超能文献

一种基于家系的罕见单倍型与数量性状关联分析方法。

A Family-Based Rare Haplotype Association Method for Quantitative Traits.

作者信息

Datta Ananda S, Lin Shili, Biswas Swati

机构信息

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA.

Department of Statistics, The Ohio State University, Columbus, Ohio, USA.

出版信息

Hum Hered. 2018;83(4):175-195. doi: 10.1159/000493543. Epub 2019 Feb 21.

Abstract

BACKGROUND

The variants identified in genome-wide association studies account for only a small fraction of disease heritability. A key to this "missing heritability" is believed to be rare variants. Specifically, we focus on rare haplotype variant (rHTV). The existing methods for detecting rHTV are mostly population-based, and as such, are susceptible to population stratification and admixture, leading to an inflated false-positive rate. Family-based methods are more robust in this respect.

METHODS

We propose a method for detecting rHTVs associated with quantitative traits called family-based quantitative Bayesian LASSO (famQBL). FamQBL can analyze any type of pedigree and is based on a mixed model framework. We regularize the haplotype effects using Bayesian LASSO and estimate the posterior distributions using Markov chain Monte Carlo methods.

RESULTS

We conduct simulation studies, including analyses of Genetic Analysis Workshop 18 simulated data, to study the properties of famQBL and compare with a standard family-based haplotype association test implemented in FBAT (family-based association test) software. We find famQBL to be more powerful than FBAT with well-controlled false-positive rates. We also apply famQBL to the Framingham Heart Study data and detect an rHTV associated with diastolic blood pressure.

CONCLUSION

FamQBL can help uncover rHTVs associated with quantitative traits.

摘要

背景

全基因组关联研究中识别出的变异仅占疾病遗传度的一小部分。人们认为,这种“缺失的遗传度”的关键在于罕见变异。具体而言,我们关注罕见单倍型变异(rHTV)。现有的检测rHTV的方法大多基于群体,因此易受群体分层和混合的影响,导致假阳性率虚高。基于家系的方法在这方面更为稳健。

方法

我们提出了一种用于检测与数量性状相关的rHTV的方法,称为基于家系的数量贝叶斯LASSO(famQBL)。FamQBL可以分析任何类型的家系,并且基于混合模型框架。我们使用贝叶斯LASSO对单倍型效应进行正则化,并使用马尔可夫链蒙特卡罗方法估计后验分布。

结果

我们进行了模拟研究,包括对遗传分析研讨会18模拟数据的分析,以研究famQBL的特性,并与FBAT(基于家系的关联检验)软件中实现的标准基于家系的单倍型关联检验进行比较。我们发现famQBL比FBAT更具效力,且假阳性率得到了很好的控制。我们还将famQBL应用于弗雷明汉心脏研究数据,并检测到一个与舒张压相关的rHTV。

结论

FamQBL有助于发现与数量性状相关的rHTV。

相似文献

本文引用的文献

4
The genetic architecture of type 2 diabetes.2型糖尿病的遗传结构
Nature. 2016 Aug 4;536(7614):41-47. doi: 10.1038/nature18642. Epub 2016 Jul 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验