Smith Rob, Ventura Dan, Prince John T
Brief Bioinform. 2015 Jan;16(1):104-17. doi: 10.1093/bib/bbt080. Epub 2013 Nov 21.
Liquid chromatography-mass spectrometry is widely used for comparative replicate sample analysis in proteomics, lipidomics and metabolomics. Before statistical comparison, registration must be established to match corresponding analytes from run to run. Alignment, the most popular correspondence approach, consists of constructing a function that warps the content of runs to most closely match a given reference sample. To date, dozens of correspondence algorithms have been proposed, creating a daunting challenge for practitioners in algorithm selection. Yet, existing reviews have highlighted only a few approaches. In this review, we describe 50 correspondence algorithms to facilitate practical algorithm selection. We elucidate the motivation for correspondence and analyze the limitations of current approaches, which include prohibitive runtimes, numerous user parameters, model limitations and the need for reference samples. We suggest and describe a paradigm shift for overcoming current correspondence limitations by building on known liquid chromatography-mass spectrometry behavior.
液相色谱-质谱联用技术在蛋白质组学、脂质组学和代谢组学中广泛用于比较重复样本分析。在进行统计比较之前,必须进行配准以匹配各次运行中的相应分析物。比对是最常用的对应方法,包括构建一个函数,该函数对各次运行的内容进行扭曲,以使其与给定的参考样本最紧密匹配。迄今为止,已提出了数十种对应算法,这给算法选择方面的从业者带来了艰巨挑战。然而,现有综述仅强调了少数几种方法。在本综述中,我们描述了50种对应算法,以方便实际的算法选择。我们阐明了对应分析的动机,并分析了当前方法的局限性,这些局限性包括运行时间过长、大量用户参数、模型局限性以及对参考样本的需求。我们建议并描述了一种范式转变,即通过基于已知的液相色谱-质谱行为来克服当前对应分析的局限性。