Suppr超能文献

代谢组合器2.0:用于液相色谱-质谱代谢组学的多数据集特征对齐

metabCombiner 2.0: Disparate Multi-Dataset Feature Alignment for LC-MS Metabolomics.

作者信息

Habra Hani, Meijer Jennifer L, Shen Tong, Fiehn Oliver, Gaul David A, Fernández Facundo M, Rempfert Kaitlin R, Metz Thomas O, Peterson Karen E, Evans Charles R, Karnovsky Alla

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Metabolites. 2024 Feb 15;14(2):125. doi: 10.3390/metabo14020125.

Abstract

Liquid chromatography-high-resolution mass spectrometry (LC-HRMS), as applied to untargeted metabolomics, enables the simultaneous detection of thousands of small molecules, generating complex datasets. Alignment is a crucial step in data processing pipelines, whereby LC-MS features derived from common ions are assembled into a unified matrix amenable to further analysis. Variability in the analytical factors that influence liquid chromatography separations complicates data alignment. This is prominent when aligning data acquired in different laboratories, generated using non-identical instruments, or between batches from large-scale studies. Previously, we developed metabCombiner for aligning disparately acquired LC-MS metabolomics datasets. Here, we report significant upgrades to metabCombiner that enable the stepwise alignment of multiple untargeted LC-MS metabolomics datasets, facilitating inter-laboratory reproducibility studies. To accomplish this, a "primary" feature list is used as a template for matching compounds in "target" feature lists. We demonstrate this workflow by aligning four lipidomics datasets from core laboratories generated using each institution's in-house LC-MS instrumentation and methods. We also introduce batchCombine, an application of the metabCombiner framework for aligning experiments composed of multiple batches. metabCombiner is available as an R package on Github and Bioconductor, along with a new online version implemented as an R Shiny App.

摘要

液相色谱-高分辨率质谱(LC-HRMS)应用于非靶向代谢组学时,能够同时检测数千种小分子,生成复杂的数据集。数据对齐是数据处理流程中的关键步骤,通过该步骤,源自共同离子的LC-MS特征被组装成一个统一的矩阵,便于进一步分析。影响液相色谱分离的分析因素的变异性使数据对齐变得复杂。在对齐不同实验室获取的数据、使用不同仪器生成的数据或大规模研究中不同批次的数据时,这一问题尤为突出。此前,我们开发了metabCombiner来对齐不同获取方式的LC-MS代谢组学数据集。在此,我们报告了对metabCombiner的重大升级,使其能够对多个非靶向LC-MS代谢组学数据集进行逐步对齐,促进实验室间的可重复性研究。为此,一个“主要”特征列表被用作匹配“目标”特征列表中化合物的模板。我们通过对齐来自核心实验室的四个脂质组学数据集来展示这一工作流程,这些数据集是使用每个机构内部的LC-MS仪器和方法生成的。我们还引入了batchCombine,这是metabCombiner框架的一个应用,用于对齐由多个批次组成的实验。metabCombiner可作为一个R包在Github和Bioconductor上获取,同时还有一个作为R Shiny应用实现的新在线版本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a363/10891690/e90333ab7e16/metabolites-14-00125-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验