Li Haiqing, Frith Jessica, Cooper-White Justin J
Tissue Engineering and Microfluidic Laboratory, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Corner of Cooper and College Road, Brisbane, 4072 Queensland, Australia.
Biomacromolecules. 2014 Jan 13;15(1):43-52. doi: 10.1021/bm4012562. Epub 2013 Dec 3.
To encourage cell adhesion on biomaterial surfaces in a more facile, safe, and low-cost fashion, we have demonstrated a noncovalent approach to spatially conjugate β-cyclodextrin (β-CD) modified peptide sequences onto self-assembled adamantane-terminated polystyrene-b-poly(ethylene oxide) (PS-PEO-Ada) films through inclusion complexing interactions between β-CDs and adamantane. By simply blending various ratios of unmodified PS-PEO with a newly synthesized PS-PEO-Ada, we produced PS polymer films that displayed well-organized adamantine-decorated cylindrical PEO domains with varying average interdomain spacings ranging from 29 to 47 nm. The presence of the adamantane moiety at the terminal end of the PEO chain permitted rapid, and importantly, oriented attachment of β-CD functionalized peptides onto these surfaces. This one-step process not only converted these proven nonadherent PS-PEO surfaces into adherent surfaces, but also permitted precisely controlled presentation and surface distribution of the conjugated peptides. The utility of these surfaces as cell culture substrates was confirmed with human mesenchymal stem cells (hMSCs). We observed that with increasing PS-PEO-Ada content in the PEO cylindrical domains, these novel polymer films displayed improved cell attachment and spreading, with notable differences in hMSC morphology. We further confirmed that this novel PS-PEO-Ada surface provides a flexible platform for facile conjugation of mixtures of β-CDs functionalized with different peptides, specifically RGD and IKVAV peptides. The cell adhesion and spreading assays on these surfaces indicated that the morphologies of hMSCs can be easily manipulated, while no significant changes in cell attachment were observed. The lock-and-key peptide conjugation technique presented in this work is applicable to any substrate that incorporates a moiety capable of forming inclusion complexes with α-, β-, and γ-CDs, providing a facile and flexible method by which to construct peptide-conjugated biomaterial substrates for a multitude of applications in fields ranging from cell bioprocessing and regenerative medicine to cell-based assays.
为了以更简便、安全且低成本的方式促进细胞在生物材料表面的黏附,我们展示了一种非共价方法,通过β-环糊精(β-CD)与金刚烷之间的包合络合相互作用,将β-CD修饰的肽序列空间共轭到自组装的金刚烷封端的聚苯乙烯-b-聚环氧乙烷(PS-PEO-Ada)薄膜上。通过简单地将不同比例的未修饰PS-PEO与新合成的PS-PEO-Ada混合,我们制备了PS聚合物薄膜,其呈现出组织良好的金刚烷修饰的圆柱形PEO域,平均域间距在29至47 nm之间变化。PEO链末端金刚烷部分的存在允许β-CD功能化肽快速且重要的是定向附着到这些表面上。这一步骤不仅将这些已证实的非黏附性PS-PEO表面转变为黏附性表面,还允许对共轭肽进行精确控制的呈现和表面分布。用人骨髓间充质干细胞(hMSCs)证实了这些表面作为细胞培养底物的实用性。我们观察到,随着PEO圆柱形域中PS-PEO-Ada含量的增加,这些新型聚合物薄膜显示出改善的细胞附着和铺展,hMSC形态有显著差异。我们进一步证实,这种新型的PS-PEO-Ada表面为用不同肽(特别是RGD和IKVAV肽)功能化的β-CD混合物的简便共轭提供了一个灵活的平台。在这些表面上的细胞黏附和铺展试验表明,hMSCs的形态可以很容易地被操控,而细胞附着没有观察到显著变化。这项工作中提出的锁钥肽共轭技术适用于任何包含能够与α-、β-和γ-CD形成包合络合物的部分的底物,提供了一种简便且灵活的方法来构建用于从细胞生物加工和再生医学到基于细胞的检测等众多领域的多种应用的肽共轭生物材料底物。