Suppr超能文献

Stimulation of the antigen receptor on WEHI-231 B lymphoma cells results in a voltage-independent increase in cytoplasmic calcium.

作者信息

LaBaer J, Tsien R Y, Fahey K A, DeFranco A L

出版信息

J Immunol. 1986 Sep 15;137(6):1836-44.

PMID:2427581
Abstract

WEHI-231, a lymphoma-derived murine B cell line, responded to anti-IgM antibodies by increasing the concentration of free calcium in the cytoplasm from 140 nM to 590 nM within 15 sec. This is very similar to the response observed previously in normal B cells (Pozzan et al., 1982, J. Cell Biol. 94:335). Only antibodies specific for mIgM stimulated this response; control antibodies had no effect. In addition, anti-IgM did not stimulate a response by a mutant with a greatly decreased amount of membrane IgM. The relationship of this increase in cytoplasmic calcium to the plasma membrane potential was examined. Anti-IgM did not cause a rapid depolarization of the cells, suggesting that a voltage-dependent calcium channel was not responsible for the calcium increase. Furthermore, experimental depolarization of WEHI-231 cells did not cause a calcium influx, and the calcium increase caused by anti-IgM was not greatly affected by previous depolarization or by prevention of depolarization. These experiments argue strongly that the increase in cytoplasmic calcium was not mediated by a depolarization-activated calcium channel, such as the one found in cardiac muscle and in some neurons. Indeed, a significant portion of the initial increase in cytoplasmic calcium was due to the release of calcium from internal stores, suggesting the involvement of a soluble mediator. Examination of these internal storage sites in permeabilized cells revealed that inositol 1,4,5-trisphosphate could induce the release of calcium. These results are consistent with the hypothesis that the calcium increase in B cells stimulated by anti-IgM is caused by breakdown of phosphatidylinositol 4,5-bisphosphate, generating diacylglycerol and inositol trisphosphate, with the latter compound mediating calcium mobilization.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验