Glycation, Oxidation and Disease Laboratory, Touro University-California College of Osteopathic Medicine, Vallejo, CA, USA.
Clin Chim Acta. 2014 Feb 15;429:38-45. doi: 10.1016/j.cca.2013.11.021. Epub 2013 Nov 23.
We hypothesize that during high density lipoprotein (HDL) remodeling PON1 reaches an optimal distribution in HDL subclasses by which it achieves maximum activity. We conducted this study to gain insight on PON1 fate and activation during short-term HDL remodeling ex vivo.
Serum from 8 healthy volunteers was either frozen at -80°C (time 0) or incubated under sterile conditions for up to 48h at 37°C or at 4°C. Aliquots were taken at 3, 6, 9, 24 and 48 h and immediately frozen at -80°C. PON1 activities were measured, as well as PON1 and apolipoprotein distributions in HDL subclasses by gradient gel electrophoresis.
The first novel finding in our study is the evidence provided for a significant activation of both lactonase and arylesterase activities of PON1 that ensues in a very short time frame of incubation of serum ex vivo at 37°C. All subjects studied displayed these changes, the activation was apparent in <3h, peaked at 6h and amounted to >20%. This is associated with a temperature and time-dependent redistribution of PON1 activity in HDL subclasses, with an increase in activity in both very large HDL2 and small HDL3 in the first phase (3-9h), followed by a progressive transfer of PON1 to very large HDL2 as the particles mature. These changes are paralleled by the appearance of weak, but apparent PON1 activity at subspecies that correspond to sdLDL. During the first phase of PON1 activation and shifts, a parallel shift of apoE can be evidenced: at 3-9h, apoE increases in sdLDL, after that time it is lost from HDL and also from sdLDL and stays in VLDL at the origin of the run. ApoA-I shifts towards larger particles, which parallels the change in PON1. As HDL matures there is a progressive shift of apoA-II towards larger HDL. Low levels of apoA-IV at the initiation of the incubation are followed by time dependent quick disappearance of apoA-IV in HDL which parallels the changes in PON1, apoE and A-II.
Short, ex vivo incubation of serum leads to quick activation of PON1 associated with transfers to HDL3c, large HDL and sdLDL. The process is blocked by CETP and LCAT inhibitors. The data suggest that HDL maturation optimizes PON1 activity. These findings may be of interest for future studies aimed at modulating PON-1 activity for its cardioprotective effects and suggest a new mechanism whereby CETP inhibitors failed in clinical trials.
我们假设在高密度脂蛋白(HDL)重塑过程中,PON1 通过达到最佳分布来实现其最大活性。我们进行这项研究是为了深入了解 PON1 在体外短期 HDL 重塑过程中的命运和激活。
将 8 名健康志愿者的血清在-80°C(时间 0)下冷冻,或在 37°C 或 4°C 下无菌条件下孵育长达 48 小时。在 3、6、9、24 和 48 小时时取等分试样,并立即在-80°C 下冷冻。测量 PON1 活性以及通过梯度凝胶电泳测定 PON1 和载脂蛋白在 HDL 亚类中的分布。
本研究的第一个新发现是提供了证据,证明在 37°C 下体外孵育血清的非常短时间内,PON1 的内酯酶和芳基酯酶活性会显著激活。所有研究对象均显示出这些变化,激活在<3 小时内明显,在 6 小时时达到高峰,达到>20%。这与 PON1 在 HDL 亚类中的活性温度和时间依赖性重新分布有关,在第一个阶段(3-9 小时)中,活性增加到非常大的 HDL2 和小的 HDL3 中,然后随着颗粒成熟,PON1 逐渐转移到非常大的 HDL2。这些变化伴随着弱但明显的 PON1 活性出现在与 sdLDL 对应的亚类中。在 PON1 激活和转移的第一阶段,可以证明 apoE 的平行转移:在 3-9 小时时,apoE 在 sdLDL 中增加,此后它从 HDL 和 sdLDL 中丢失,并在 VLDL 中保持原始状态。apoA-I 向较大颗粒转移,与 PON1 的变化平行。随着 HDL 的成熟,apoA-II 逐渐向较大的 HDL 转移。在孵育开始时,apoA-IV 的水平较低,随后apoA-IV 在 HDL 中的快速消失与 PON1、apoE 和 A-II 的变化平行。
血清的短期、体外孵育会导致 PON1 的快速激活,与 HDL3c、大 HDL 和 sdLDL 的转移相关。该过程被 CETP 和 LCAT 抑制剂阻断。数据表明,HDL 成熟可优化 PON1 活性。这些发现可能对未来旨在调节 PON-1 活性以发挥其心脏保护作用的研究具有重要意义,并提出了一种新的机制,即 CETP 抑制剂在临床试验中失败的原因。