Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
Rice (N Y). 2013 Jun 25;6(1):16. doi: 10.1186/1939-8433-6-16.
The rice transcription factors IDEF1, IDEF2, and OsIRO2 have been identified as key regulators of the genes that control iron (Fe) uptake, including the biosynthesis of mugineic acid-family phytosiderophores (MAs). To clarify the onset of Fe deficiency, changes in gene expression were examined by microarray analysis using rice roots at 3, 6, 9, 12, 24, and 36 h after the onset of Fe-deficiency treatment.
More than 1000 genes were found to be upregulated over a time course of 36 h. Expression of MAs-biosynthetic genes, OsIRO2, and the Fe3+-MAs complex transporter OsYSL15 was upregulated at the 24 h and 36 h time points. Moreover, these genes showed very similar patterns of expression changes, but their expression patterns were completely different from those of a metallothionein gene (OsIDS1) and the Fe2+-transporter genes OsIRT1 and OsIRT2. OsIDS1 expression was upregulated by the 6 h time point. The early induction of OsIDS1 expression was distinct from the other Fe-deficiency-inducible genes investigated and suggested a functional relationship with heavy-metal homeostasis during the early stages of Fe deficiency.
We showed that many genes related to MAs biosynthesis and transports were regulated by a distinct mechanism in roots. Furthermore, differences in expression changes and timing in response to Fe deficiency implied that different combinations of gene regulation mechanisms control the initial responses to Fe deficiency.
水稻转录因子 IDFF1、IDFF2 和 OsIRO2 已被确定为控制铁(Fe)吸收基因的关键调节剂,包括合成 mugineic 酸族植物螯合肽(MAs)。为了阐明 Fe 缺乏症的发作,通过使用 Fe 缺乏处理后 3、6、9、12、24 和 36 h 的水稻根进行微阵列分析,检查了基因表达的变化。
在 36 h 的时间过程中发现了 1000 多个上调基因。MAs 生物合成基因、OsIRO2 和 Fe3+-MAs 复合转运蛋白 OsYSL15 的表达在 24 h 和 36 h 时间点上调。此外,这些基因表现出非常相似的表达变化模式,但它们的表达模式与金属硫蛋白基因(OsIDS1)和 Fe2+-转运基因 OsIRT1 和 OsIRT2 完全不同。OsIDS1 的表达在 6 h 时间点上调。OsIDS1 表达的早期诱导与所研究的其他 Fe 缺乏诱导基因明显不同,表明在 Fe 缺乏的早期阶段与重金属稳态存在功能关系。
我们表明,许多与 MAs 生物合成和转运相关的基因通过根中的一种独特机制进行调节。此外,对 Fe 缺乏的响应的表达变化和时间的差异暗示了不同的基因调控机制组合控制对 Fe 缺乏的初始反应。