Suppr超能文献

小麦ZIP基因家族的全基因组鉴定及其在植物中的功能特性分析

Genome-Wide Identification of Wheat ZIP Gene Family and Functional Characterization of the in Plants.

作者信息

Li Song, Liu Zihui, Guo Linlin, Li Hongjie, Nie Xiaojun, Chai Shoucheng, Zheng Weijun

机构信息

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.

出版信息

Front Plant Sci. 2021 Nov 3;12:748146. doi: 10.3389/fpls.2021.748146. eCollection 2021.

Abstract

The ZIP (Zn-regulated, iron-regulated transporter-like protein) transporter plays an important role in regulating the uptake, transport, and accumulation of microelements in plants. Although some studies have identified ZIP genes in wheat, the significance of this family is not well understood, particularly its involvement under Fe and Zn stresses. In this study, we comprehensively characterized the wheat ZIP family at the genomic level and performed functional verification of three TaZIP genes by yeast complementary analysis and of by transgenic . Totally, 58 TaZIP genes were identified based on the genome-wide search against the latest wheat reference (IWGSC_V1.1). They were then classified into three groups, based on phylogenetic analysis, and the members within the same group shared the similar exon-intron structures and conserved motif compositions. Expression pattern analysis revealed that the most of TaZIP genes were highly expressed in the roots, and nine TaZIP genes displayed high expression at grain filling stage. When exposed to ZnSO and FeCl solutions, the TaZIP genes showed differential expression patterns. Additionally, six ZIP genes responded to zinc-iron deficiency. A total of 57 miRNA-TaZIP interactions were constructed based on the target relationship, and three miRNAs were downregulated when exposed to the ZnSO and FeCl stresses. Yeast complementation analysis proved that , , and could transport Zn and Fe. Finally, overexpression of in showed that the transgenic plants displayed better tolerance to Fe/Zn stresses and could enrich more metallic elements in their seeds than wild-type . This study systematically analyzed the genomic organization, gene structure, expression profiles, regulatory network, and the biological function of the ZIP family in wheat, providing better understanding of the regulatory roles of TaZIPs and contributing to improve nutrient quality in wheat crops.

摘要

ZIP(锌调节、铁调节转运蛋白样蛋白)转运体在调节植物中微量元素的吸收、运输和积累方面发挥着重要作用。尽管一些研究已经在小麦中鉴定出ZIP基因,但该家族的重要性尚未得到充分理解,尤其是其在铁和锌胁迫下的作用。在本研究中,我们在基因组水平上全面表征了小麦ZIP家族,并通过酵母互补分析对三个TaZIP基因进行了功能验证,以及通过转基因进行了功能验证。通过对最新的小麦参考基因组(IWGSC_V1.1)进行全基因组搜索,共鉴定出58个TaZIP基因。然后根据系统发育分析将它们分为三组,同一组内的成员具有相似的外显子-内含子结构和保守基序组成。表达模式分析表明,大多数TaZIP基因在根中高表达,九个TaZIP基因在灌浆期高表达。当暴露于硫酸锌和氯化铁溶液中时,TaZIP基因表现出不同的表达模式。此外,六个ZIP基因对锌铁缺乏有响应。基于靶标关系构建了总共57个miRNA-TaZIP相互作用,当暴露于硫酸锌和氯化铁胁迫时,三个miRNA被下调。酵母互补分析证明,TaZIP4、TaZIP5和TaZIP9可以转运锌和铁。最后,在拟南芥中过表达TaZIP4表明,转基因植物对铁/锌胁迫表现出更好的耐受性,并且其种子中可以富集比野生型更多的金属元素。本研究系统地分析了小麦ZIP家族的基因组组织、基因结构、表达谱、调控网络和生物学功能,有助于更好地理解TaZIPs的调控作用,并为改善小麦作物的营养品质做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6e5/8595109/a7921163481b/fpls-12-748146-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验