Suppr超能文献

非洲爪蟾体内的泵浦探测光学相干断层扫描成像

In vivo pump-probe optical coherence tomography imaging in Xenopus laevis.

作者信息

Carrasco-Zevallos Oscar, Shelton Ryan L, Kim Wihan, Pearson Jeremy, Applegate Brian E

机构信息

Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 TAMU, Texas A&M University, College Station, TX 77843, USA.

出版信息

J Biophotonics. 2015 Jan;8(1-2):25-35. doi: 10.1002/jbio.201300119. Epub 2013 Nov 26.

Abstract

Currently, optical coherence tomography (OCT), is not capable of obtaining molecular information often crucial for identification of disease. To enable molecular imaging with OCT, we have further developed a technique that harnesses transient changes in light absorption in the sample to garner molecular information. A Fourier-domain Pump-Probe OCT (PPOCT) system utilizing a 532 nm pump and 830 nm probe has been developed for imaging hemoglobin. Methylene blue, a biological dye with well-know photophysics, was used to characterize the system before investigating the origin of the hemoglobin PPOCT signal. The first in vivo PPOCT images were recorded of the vasculature in Xenopus laevis. The technique was shown to work equally well in flowing and nonflowing vessels. Furthermore, PPOCT was compared with other OCT extensions which require flow, such as Doppler OCT and phase-variance OCT. PPOCT was shown to better delineate tortuous vessels, where nodes often restrict Doppler and phase-variance reconstruction.

摘要

目前,光学相干断层扫描(OCT)无法获取对于疾病识别通常至关重要的分子信息。为了实现OCT分子成像,我们进一步开发了一种技术,该技术利用样品中光吸收的瞬态变化来获取分子信息。已开发出一种利用532nm泵浦光和830nm探测光的傅里叶域泵浦-探测OCT(PPOCT)系统用于血红蛋白成像。在研究血红蛋白PPOCT信号的来源之前,使用具有众所周知光物理性质的生物染料亚甲蓝对该系统进行了表征。首次记录了非洲爪蟾血管系统的体内PPOCT图像。结果表明该技术在流动和非流动血管中均能同样良好地发挥作用。此外,还将PPOCT与其他需要血流的OCT扩展技术(如多普勒OCT和相位方差OCT)进行了比较。结果表明,PPOCT能更好地描绘出曲折的血管,而在这些血管中,节点常常会限制多普勒和相位方差重建。

相似文献

1
In vivo pump-probe optical coherence tomography imaging in Xenopus laevis.
J Biophotonics. 2015 Jan;8(1-2):25-35. doi: 10.1002/jbio.201300119. Epub 2013 Nov 26.
2
In vivo molecular contrast OCT imaging of methylene blue.
Opt Lett. 2015 Apr 1;40(7):1426-9. doi: 10.1364/OL.40.001426.
3
Fourier domain Pump-Probe Optical Coherence Tomography imaging of melanin.
Opt Express. 2010 Jun 7;18(12):12399-410. doi: 10.1364/OE.18.012399.
5
Manual-scanning optical coherence tomography probe based on position tracking.
Opt Lett. 2009 Nov 1;34(21):3400-2. doi: 10.1364/OL.34.003400.
6
In vivo full-field en face correlation mapping optical coherence tomography.
J Biomed Opt. 2013 Dec;18(12):126008. doi: 10.1117/1.JBO.18.12.126008.
7
Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in Xenopus laevis tadpoles.
Invest Ophthalmol Vis Sci. 2010 Feb;51(2):1066-70. doi: 10.1167/iovs.09-4260. Epub 2009 Sep 9.
8
Molecular contrast in optical coherence tomography by use of a pump-probe technique.
Opt Lett. 2003 Mar 1;28(5):340-2. doi: 10.1364/ol.28.000340.
9
In vivo video-rate cellular-level full-field optical coherence tomography.
J Biomed Opt. 2007 Nov-Dec;12(6):064024. doi: 10.1117/1.2822159.
10
Tadpole Craniocardiac Imaging Using Optical Coherence Tomography.
Cold Spring Harb Protoc. 2022 Jun 7;2022(5):Pdb.prot105676. doi: 10.1101/pdb.prot105676.

引用本文的文献

1
Molecular Contrast Optical Coherence Tomography and Its Applications in Medicine.
Int J Mol Sci. 2022 Mar 11;23(6):3038. doi: 10.3390/ijms23063038.
2
Advances in multimodal imaging in ophthalmology.
Ther Adv Ophthalmol. 2021 Mar 19;13:25158414211002400. doi: 10.1177/25158414211002400. eCollection 2021 Jan-Dec.
3
Methylene blue-filled biodegradable polymer particles as a contrast agent for optical coherence tomography.
Biomed Opt Express. 2020 Jul 10;11(8):4255-4274. doi: 10.1364/BOE.399322. eCollection 2020 Aug 1.
4
In vivo molecular contrast OCT imaging of methylene blue.
Opt Lett. 2015 Apr 1;40(7):1426-9. doi: 10.1364/OL.40.001426.
5
Molecular Imaging in Optical Coherence Tomography.
Curr Mol Imaging. 2014 Jul 1;3(2):88-105. doi: 10.2174/2211555203666141117233442.

本文引用的文献

1
Molecular imaging true-colour spectroscopic optical coherence tomography.
Nat Photonics. 2011 Dec 1;5(12):744-747. doi: 10.1038/nphoton.2011.257. Epub 2011 Oct 23.
2
3
Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography.
Phys Med Biol. 2011 Nov 21;56(22):7081-92. doi: 10.1088/0031-9155/56/22/006. Epub 2011 Oct 21.
4
In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography.
Lab Invest. 2011 Nov;91(11):1596-604. doi: 10.1038/labinvest.2011.112. Epub 2011 Aug 1.
5
In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography.
Biomed Opt Express. 2011 Jun 1;2(6):1504-13. doi: 10.1364/BOE.2.001504. Epub 2011 May 11.
7
Pump-probe imaging differentiates melanoma from melanocytic nevi.
Sci Transl Med. 2011 Feb 23;3(71):71ra15. doi: 10.1126/scitranslmed.3001604.
8
Ultrahigh resolution photoacoustic microscopy via transient absorption.
Biomed Opt Express. 2010 Aug 23;1(2):676-686. doi: 10.1364/BOE.1.000676.
10
Fourier domain Pump-Probe Optical Coherence Tomography imaging of melanin.
Opt Express. 2010 Jun 7;18(12):12399-410. doi: 10.1364/OE.18.012399.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验