Conlon Anna S C, Taylor Jeremy M G, Elliott Michael R
Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
Biostatistics. 2014 Apr;15(2):266-83. doi: 10.1093/biostatistics/kxt051. Epub 2013 Nov 26.
In clinical trials, a surrogate outcome variable (S) can be measured before the outcome of interest (T) and may provide early information regarding the treatment (Z) effect on T. Using the principal surrogacy framework introduced by Frangakis and Rubin (2002. Principal stratification in causal inference. Biometrics 58, 21-29), we consider an approach that has a causal interpretation and develop a Bayesian estimation strategy for surrogate validation when the joint distribution of potential surrogate and outcome measures is multivariate normal. From the joint conditional distribution of the potential outcomes of T, given the potential outcomes of S, we propose surrogacy validation measures from this model. As the model is not fully identifiable from the data, we propose some reasonable prior distributions and assumptions that can be placed on weakly identified parameters to aid in estimation. We explore the relationship between our surrogacy measures and the surrogacy measures proposed by Prentice (1989. Surrogate endpoints in clinical trials: definition and operational criteria. Statistics in Medicine 8, 431-440). The method is applied to data from a macular degeneration study and an ovarian cancer study.
在临床试验中,替代结局变量(S)可在感兴趣的结局(T)之前进行测量,并可能提供有关治疗(Z)对T的效应的早期信息。使用弗兰加基斯和鲁宾(2002年。因果推断中的主分层。生物统计学58,21 - 29)引入的主替代框架,我们考虑一种具有因果解释的方法,并在潜在替代指标和结局指标的联合分布为多元正态时,开发一种用于替代验证的贝叶斯估计策略。从给定S的潜在结局时T的潜在结局的联合条件分布,我们从该模型中提出替代验证指标。由于该模型无法从数据中完全识别,我们提出一些合理的先验分布和假设,这些可以应用于弱识别参数以辅助估计。我们探讨了我们的替代指标与普伦蒂斯(1989年。临床试验中的替代终点:定义和操作标准。医学统计学8,431 - 440)提出的替代指标之间的关系。该方法应用于黄斑变性研究和卵巢癌研究的数据。